李永乐复习全书概率论与数理统计 第四章 随机变量的数字特征

4.1  随机变量的数学期望和方差

例8  设随机变量 X ∼ P ( λ ) X\sim P(\lambda) XP(λ),试证 E ( X ) = λ E(X)=\lambda E(X)=λ

   P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , ⋯ P\{X=k\}=\cfrac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,\cdots P{X=k}=k!λkeλ,k=0,1,2,,故
E ( X ) = ∑ k = 0 + ∞ k ⋅ λ k k ! e − λ = ∑ k = 1 + ∞ λ k ( k − 1 ) ! e − λ = ∑ i = 0 + ∞ λ i + 1 i ! e − λ = λ ∑ i = 0 + ∞ λ i i ! e − λ = λ . \begin{aligned} E(X)&=\displaystyle\sum^{+\infty}_{k=0}k\cdot\cfrac{\lambda^k}{k!}e^{-\lambda}=\displaystyle\sum^{+\infty}_{k=1}\cfrac{\lambda^k}{(k-1)!}e^{-\lambda}\\ &=\displaystyle\sum^{+\infty}_{i=0}\cfrac{\lambda^{i+1}}{i!}e^{-\lambda}=\lambda\displaystyle\sum^{+\infty}_{i=0}\cfrac{\lambda^i}{i!}e^{-\lambda}=\lambda. \end{aligned} E(X)=k=0+kk!λkeλ=k=1+(k1)!λkeλ=i=0+i!λi+1eλ=λi=0+i!λieλ=λ.
这道题主要利用了二次项展开式求解

例9  设随机变量 X X X的分布函数为 F ( x ) = 0.3 Φ ( x ) + 0.7 Φ ( x − 1 2 ) F(x)=0.3\varPhi(x)+0.7\varPhi\left(\cfrac{x-1}{2}\right) F(x)=0.3Φ(x)+0.7Φ(2x1),其中 Φ ( x ) \varPhi(x) Φ(x)为标准正态分布函数,则 E ( X ) = E(X)= E(X)=______。

   f ( x ) = F ′ ( x ) = 0.3 φ ( x ) + 0.7 2 φ ( x − 1 2 ) f(x)=F'(x)=0.3\varphi(x)+\cfrac{0.7}{2}\varphi\left(\cfrac{x-1}{2}\right) f(x)=F(x)=0.3φ(x)+20.7φ(2x1),其中 φ ( x ) \varphi(x) φ(x)为标准正态分布函数。
E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x = 0.3 ∫ − ∞ + ∞ x φ ( x ) d x + 0.7 2 ∫ − ∞ + ∞ x φ ( x − 1 2 ) d x = 0.3 × 0 + 0.7 ∫ − ∞ + ∞ ( 2 t + 1 ) φ ( t ) d t = 0.7. \begin{aligned} E(X)&=\displaystyle\int^{+\infty}_{-\infty}xf(x)\mathrm{d}x=0.3\displaystyle\int^{+\infty}_{-\infty}x\varphi(x)\mathrm{d}x+\cfrac{0.7}{2}\displaystyle\int^{+\infty}_{-\infty}x\varphi\left(\cfrac{x-1}{2}\right)\mathrm{d}x\\ &=0.3\times0+0.7\displaystyle\int^{+\infty}_{-\infty}(2t+1)\varphi(t)\mathrm{d}t=0.7. \end{aligned} E(X)=+xf(x)dx=0.3+xφ(x)dx+20.7+xφ(2x1)dx=0.3×0+0.7+(2t+1)φ(t)dt=0.7.
这道题主要利用了积分求解

例11  设随机变量 X X X Y Y Y独立同分布,已知 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),求 Z = min ⁡ ( X , Y ) Z=\min(X,Y) Z=min(X,Y)的数学期望 E ( Z ) E(Z) E(Z)

  设 ξ = X − μ σ , η = Y − μ σ \xi=\cfrac{X-\mu}{\sigma},\eta=\cfrac{Y-\mu}{\sigma} ξ=σXμ,η=σYμ ξ , η \xi,\eta ξ,η独立同为标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1)。显然
Z = min ⁡ ( X , Y ) = min ⁡ ( σ ξ + μ , σ η + μ ) = σ min ⁡ ( ξ , η ) + μ , E [ min ⁡ ( ξ , η ) ] = ∫ − ∞ + ∞ ∫ − ∞ + ∞ min ⁡ ( X , Y ) 1 2 π e − x 2 + y 2 2 d x d y = 1 2 π ∫ − ∞ + ∞ e − x 2 2 d x ∫ − ∞ x y e − y 2 2 d y + 1 2 π ∫ − ∞ + ∞ e − y 2 2 d y ∫ − ∞ y x e − x 2 2 d x = 2 ⋅ 1 2 π ∫ − ∞ + ∞ ( − 1 ) e − x 2 d x = − 1 π . Z=\min(X,Y)=\min(\sigma\xi+\mu,\sigma\eta+\mu)=\sigma\min(\xi,\eta)+\mu,\\ \begin{aligned} E[\min(\xi,\eta)]&=\displaystyle\int^{+\infty}_{-\infty}\displaystyle\int^{+\infty}_{-\infty}\min(X,Y)\cfrac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}\mathrm{d}x\mathrm{d}y\\ &=\cfrac{1}{2\pi}\displaystyle\int^{+\infty}_{-\infty}e^{-\frac{x^2}{2}}\mathrm{d}x\displaystyle\int^x_{-\infty}ye^{-\frac{y^2}{2}}\mathrm{d}y+\cfrac{1}{2\pi}\displaystyle\int^{+\infty}_{-\infty}e^{-\frac{y^2}{2}}\mathrm{d}y\displaystyle\int^y_{-\infty}xe^{-\frac{x^2}{2}}\mathrm{d}x\\ &=2\cdot\cfrac{1}{2\pi}\displaystyle\int^{+\infty}_{-\infty}(-1)e^{-x^2}\mathrm{d}x=-\cfrac{1}{\sqrt{\pi}}. \end{aligned} Z=min(X,Y)=min(σξ+μ,ση+μ)=σmin(ξ,η)+μ,E[min(ξ,η)]=++min(X,Y)2π1e2x2+y2dxdy=2π1+e2x2dxxye2y2dy+2π1+e2y2dyyxe2x2dx=22π1+(1)ex2dx=π 1.
  所以 E ( Z ) = σ E [ min ⁡ ( ξ , η ) ] + μ = μ − σ π E(Z)=\sigma E[\min(\xi,\eta)]+\mu=\mu-\cfrac{\sigma}{\sqrt{\pi}} E(Z)=σE[min(ξ,η)]+μ=μπ σ。(这道题主要利用了积分公式求解

4.2  矩、协方差和相关系数

例2  设随机变量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立且均服从标准正态分布,记 X ‾ = 1 n ∑ i = 1 n X i , Y i = X i − X ‾ \overline{X}=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i,Y_i=X_i-\overline{X} X=n1i=1nXi,Yi=XiX,则 C o v ( Y 1 , Y n ) = \mathrm{Cov}(Y_1,Y_n)= Cov(Y1,Yn)=______。


E ( X ‾ ) = E ( 1 n ∑ i = 1 n X i ) = 1 n ∑ i = 1 n E ( X i ) = 0 , E ( Y i ) = E ( X i ) − E ( X ‾ ) = 0. C o v ( Y 1 , Y n ) = E { [ Y 1 − E ( Y 1 ) ] [ Y n − E ( Y n ) ] } = E ( Y 1 Y n ) = E [ ( X 1 − X ‾ ) ( X n − X ‾ ) ] = E ( X 1 X n − X 1 X ‾ − X n X ‾ + X ‾ 2 ) = E ( X 1 X n ) − E ( X 1 X ‾ ) − E ( X n X ‾ ) + E ( X ‾ 2 ) . E(\overline{X})=E\left(\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i\right)=\cfrac{1}{n}\displaystyle\sum^n_{i=1}E(X_i)=0,\\ E(Y_i)=E(X_i)-E(\overline{X})=0.\\ \begin{aligned} \mathrm{Cov}(Y_1,Y_n)&=E\{[Y_1-E(Y_1)][Y_n-E(Y_n)]\}\\ &=E(Y_1Y_n)=E[(X_1-\overline{X})(X_n-\overline{X})]\\ &=E(X_1X_n-X_1\overline{X}-X_n\overline{X}+\overline{X}^2)\\ &=E(X_1X_n)-E(X_1\overline{X})-E(X_n\overline{X})+E(\overline{X}^2). \end{aligned} E(X)=E(n1i=1nXi)=n1i=1nE(Xi)=0,E(Yi)=E(Xi)E(X)=0.Cov(Y1,Yn)=E{[Y1E(Y1)][YnE(Yn)]}=E(Y1Yn)=E[(X1X)(XnX)]=E(X1XnX1XXnX+X2)=E(X1Xn)E(X1X)E(XnX)+E(X2).
  由于 X 1 , X n X_1,X_n X1,Xn相互独立, E ( X 1 X n ) = E ( X 1 X n ) E(X_1X_n)=E(X_1X_n) E(X1Xn)=E(X1Xn),由对称性得出 E ( X 1 X ‾ ) = E ( X n X ‾ ) E(X_1\overline{X})=E(X_n\overline{X}) E(X1X)=E(XnX),而 E ( X ‾ 2 ) = D ( X ‾ ) + [ E ( X ‾ ) ] 2 = D ( 1 n ∑ i = 1 n X i ) + 0 2 = 1 n 2 ∑ i = 1 n D ( X i ) = 1 n E(\overline{X}^2)=D(\overline{X})+[E(\overline{X})]^2=D\left(\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i\right)+0^2=\cfrac{1}{n^2}\displaystyle\sum^n_{i=1}D(X_i)=\cfrac{1}{n} E(X2)=D(X)+[E(X)]2=D(n1i=1nXi)+02=n21i=1nD(Xi)=n1
  总之,
C o v ( Y 1 , Y n ) = E ( X 1 ) E ( X n ) − 2 E ( X 1 X ‾ ) + 1 n = 0 − 2 ⋅ 1 n ⋅ E ( X 1 2 + ∑ i = 2 n X 1 X i ) + 1 n = − 2 n ( 1 + 0 ) + 1 n = − 1 n . \begin{aligned} \mathrm{Cov}(Y_1,Y_n)&=E(X_1)E(X_n)-2E(X_1\overline{X})+\cfrac{1}{n}\\ &=0-2\cdot\cfrac{1}{n}\cdot E\left(X_1^2+\displaystyle\sum^n_{i=2}X_1X_i\right)+\cfrac{1}{n}\\ &=-\cfrac{2}{n}(1+0)+\cfrac{1}{n}=-\cfrac{1}{n}. \end{aligned} Cov(Y1,Yn)=E(X1)E(Xn)2E(X1X)+n1=02n1E(X12+i=2nX1Xi)+n1=n2(1+0)+n1=n1.
这道题主要利用了方差性质求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
  欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值