李永乐复习全书概率论与数理统计 第五、六章 大数定律和中心极限定理及数理统计的基本概念

第五章  大数定律和中心极限定理

第六章  数理统计的基本概念

6.1  总体、样本、统计量和样本数字特征

例4  设总体 X ∼ P ( λ ) X\sim P(\lambda) XP(λ),则来自总体 X X X的样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的样本均值 X ‾ \overline{X} X的分布律为______。

  当 X 1 , X 2 X_1,X_2 X1,X2独立时, X 1 + X 2 ∼ P ( 2 λ ) X_1+X_2\sim P(2\lambda) X1+X2P(2λ),进一步得知 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn独立同为 P ( λ ) P(\lambda) P(λ)分布时 ∑ i = 1 n X i = n X ‾ ∼ P ( n λ ) \displaystyle\sum^n_{i=1}X_i=n\overline{X}\sim P(n\lambda) i=1nXi=nXP(nλ)。于是,对于任意 n > 2 n>2 n>2,得 n X ‾ n\overline{X} nX的分布律 P { n X ‾ = k } = ( n λ ) k k ! e − n λ , k = 0 , 1 , 2 , ⋯ P\{n\overline{X}=k\}=\cfrac{(n\lambda)^k}{k!}e^{-n\lambda},k=0,1,2,\cdots P{nX=k}=k!(nλ)kenλ,k=0,1,2,。而 P { n X ‾ = k } = P { X ‾ = k n } P\{n\overline{X}=k\}=P\left\{\overline{X}=\cfrac{k}{n}\right\} P{nX=k}=P{X=nk},所以 P { X ‾ = k n } = ( n λ ) k k ! e − n λ , k = 0 , 1 , 2 , ⋯ P\left\{\overline{X}=\cfrac{k}{n}\right\}=\cfrac{(n\lambda)^k}{k!}e^{-n\lambda},k=0,1,2,\cdots P{X=nk}=k!(nλ)kenλ,k=0,1,2,。(这道题主要利用了分布函数性质求解

6.2  常用统计抽样分布和正态总体的抽样分布

例5  设 X ∼ N ( 0 , σ 2 ) X\sim N(0,\sigma^2) XN(0,σ2),从总体 X X X中抽取样本 X 1 , X 2 , ⋯   , X 9 X_1,X_2,\cdots,X_9 X1,X2,,X9,试确定 σ \sigma σ的值,使得 P { 1 < X ‾ < 3 } P\{1<\overline{X}<3\} P{1<X<3}为最大,其中 X ‾ = 1 9 ∑ i = 1 9 X i \overline{X}=\cfrac{1}{9}\displaystyle\sum^9_{i=1}X_i X=91i=19Xi

  因为 X ‾ σ / 3 = 3 X ‾ σ ∼ N ( 0 , 1 ) \cfrac{\overline{X}}{\sigma/3}=\cfrac{3\overline{X}}{\sigma}\sim N(0,1) σ/3X=σ3XN(0,1),所以
p ( σ ) = P { 1 < X ‾ < 3 } = P { 3 σ < 3 X ‾ σ ⩽ 9 σ } = Φ ( 9 σ ) − Φ ( 3 σ ) , p ′ ( σ ) = φ ( 9 σ ) ( − 9 σ 2 ) − φ ( 3 σ ) ( − 3 σ 2 ) = − 9 2 π σ 2 e − 81 2 σ 2 + 3 2 π σ 2 e − 9 2 σ 2 = 3 2 π σ 2 e − 9 2 σ 2 ( 1 − 3 e − 36 σ 2 ) . p(\sigma)=P\{1<\overline{X}<3\}=P\left\{\cfrac{3}{\sigma}<\cfrac{3\overline{X}}{\sigma}\leqslant\cfrac{9}{\sigma}\right\}=\varPhi\left(\cfrac{9}{\sigma}\right)-\varPhi\left(\cfrac{3}{\sigma}\right),\\ \begin{aligned} p'(\sigma)&=\varphi\left(\cfrac{9}{\sigma}\right)\left(-\cfrac{9}{\sigma^2}\right)-\varphi\left(\cfrac{3}{\sigma}\right)\left(-\cfrac{3}{\sigma^2}\right)\\ &=-\cfrac{9}{\sqrt{2\pi}\sigma^2}e^{-\frac{81}{2\sigma^2}}+\cfrac{3}{\sqrt{2\pi}\sigma^2}e^{-\frac{9}{2\sigma^2}}=\cfrac{3}{\sqrt{2\pi}\sigma^2}e^{-\frac{9}{2\sigma^2}}(1-3e^{-\frac{36}{\sigma^2}}). \end{aligned} p(σ)=P{1<X<3}=P{σ3<σ3Xσ9}=Φ(σ9)Φ(σ3),p(σ)=φ(σ9)(σ29)φ(σ3)(σ23)=2π σ29e2σ281+2π σ23e2σ29=2π σ23e2σ29(13eσ236).
  令 p ′ ( σ ) = 0 p'(\sigma)=0 p(σ)=0,得 e − 36 σ 2 = 1 3 e^{-\frac{36}{\sigma^2}}=\cfrac{1}{3} eσ236=31,解得 σ = 6 ln ⁡ 3 \sigma=\cfrac{6}{\sqrt{\ln3}} σ=ln3 6。当 σ < 6 ln ⁡ 3 \sigma<\cfrac{6}{\sqrt{\ln3}} σ<ln3 6时, p ′ ( σ ) > 0 p'(\sigma)>0 p(σ)>0;当 σ > 6 ln ⁡ 3 \sigma>\cfrac{6}{\sqrt{\ln3}} σ>ln3 6时, p ′ ( σ ) < 0 p'(\sigma)<0 p(σ)<0
  因此,当 σ = 6 ln ⁡ 3 \sigma=\cfrac{6}{\sqrt{\ln3}} σ=ln3 6时, p ( σ ) = P { 1 < X ‾ < 3 } p(\sigma)=P\{1<\overline{X}<3\} p(σ)=P{1<X<3}为最大。(这道题主要利用了函数求导求解

例6  已知 X 1 , X 2 , X 3 X_1,X_2,X_3 X1,X2,X3相互独立且服从 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2),证明: 2 3 X 1 + X 2 + X 3 ∣ X 2 − X 3 ∣ \sqrt{\cfrac{2}{3}}\cfrac{X_1+X_2+X_3}{|X_2-X_3|} 32 X2X3X1+X2+X3服从 t ( 1 ) t(1) t(1)分布。

  记 Y 1 = X 2 + X 3 , Y 2 = X 2 − X 3 Y_1=X_2+X_3,Y_2=X_2-X_3 Y1=X2+X3,Y2=X2X3,则
C o v ( Y 1 , Y 2 ) = E ( Y 1 Y 2 ) − E ( Y 1 ) E ( Y 2 ) = E [ ( X 2 + X 3 ) ( X 2 − X 3 ) ] = E ( X 1 2 ) − E ( X 2 2 ) = σ 2 − σ 2 = 0. \begin{aligned} \mathrm{Cov}(Y_1,Y_2)&=E(Y_1Y_2)-E(Y_1)E(Y_2)=E[(X_2+X_3)(X_2-X_3)]\\ &=E(X_1^2)-E(X_2^2)=\sigma^2-\sigma^2=0. \end{aligned} Cov(Y1,Y2)=E(Y1Y2)E(Y1)E(Y2)=E[(X2+X3)(X2X3)]=E(X12)E(X22)=σ2σ2=0.
  所以 Y 1 , Y 2 Y_1,Y_2 Y1,Y2独立, N ( 0 , 2 σ 2 ) N(0,2\sigma^2) N(0,2σ2)均服从,且与 X 1 X_1 X1独立, X 1 + X 2 + X 3 = X 1 + Y 1 ∼ N ( 0 , 3 σ 2 ) X_1+X_2+X_3=X_1+Y_1\sim N(0,3\sigma^2) X1+X2+X3=X1+Y1N(0,3σ2),所以 1 σ 3 ( X 1 + X 2 + X 3 ) ∼ N ( 0 , 1 ) , ( X 2 − X 3 2 σ ) 2 ∼ χ 2 ( 1 ) \cfrac{1}{\sigma\sqrt{3}}(X_1+X_2+X_3)\sim N(0,1),\left(\cfrac{X_2-X_3}{\sqrt{2}\sigma}\right)^2\sim\chi^2(1) σ3 1(X1+X2+X3)N(0,1),(2 σX2X3)2χ2(1),且 X 1 + X 2 + X 3 X_1+X_2+X_3 X1+X2+X3 X 2 − X 3 X_2-X_3 X2X3相互独立,按 t t t分布定义有 2 3 X 1 + X 2 + X 3 ∣ X 2 − X 3 ∣ ∼ t ( 1 ) \sqrt{\cfrac{2}{3}}\cfrac{X_1+X_2+X_3}{|X_2-X_3|}\sim t(1) 32 X2X3X1+X2+X3t(1)。(这道题主要利用了协方差求解

例8  设随机变量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn独立同分布且具有相同的分布密度,证明: P { X n > max ⁡ ( X 1 , ⋯   , X n ) } = 1 n P\{X_n>\max(X_1,\cdots,X_n)\}=\cfrac{1}{n} P{Xn>max(X1,,Xn)}=n1

  以 f ( x ) , F ( x ) f(x),F(x) f(x),F(x)分别表示 X i X_i Xi共同的概率密度和分布函数,则
P { X n > max ⁡ ( X 1 , ⋯   , X n ) } = P { X 1 < X n , ⋯   , X n − 1 < X n } = ∫ − ∞ + ∞ [ ∫ ⋯ ∫ x i < x n ∏ i = 1 n − 1 f ( x i ) d x i ] f ( x n ) d x n = ∫ − ∞ + ∞ [ ∏ i = 1 n − 1 ∫ − ∞ x n f ( x i ) d x i ] f ( x n ) d x n = ∫ − ∞ + ∞ F n − 1 ( x n ) f ( x n ) d x n = 1 n F n ( x n ) ∣ − ∞ + ∞ = 1 n . \begin{aligned} P\{X_n>\max(X_1,\cdots,X_n)\}&=P\{X_1<X_n,\cdots,X_{n-1}<X_n\}\\ &=\displaystyle\int^{+\infty}_{-\infty}\left[{\displaystyle\int\cdots\displaystyle\int}_{x_i<x_n} \prod^{n-1}_{i=1}f(x_i)\mathrm{d}x_i\right]f(x_n)\mathrm{d}x_n\\ &=\displaystyle\int^{+\infty}_{-\infty}\left[\prod^{n-1}_{i=1}\displaystyle\int^{x_n}_{-\infty}f(x_i)\mathrm{d}x_i\right]f(x_n)\mathrm{d}x_n\\ &=\displaystyle\int^{+\infty}_{-\infty}F^{n-1}(x_n)f(x_n)\mathrm{d}x_n\\ &=\cfrac{1}{n}F^n(x_n)\biggm\vert^{+\infty}_{-\infty}=\cfrac{1}{n}. \end{aligned} P{Xn>max(X1,,Xn)}=P{X1<Xn,,Xn1<Xn}=+[xi<xni=1n1f(xi)dxi]f(xn)dxn=+[i=1n1xnf(xi)dxi]f(xn)dxn=+Fn1(xn)f(xn)dxn=n1Fn(xn)+=n1.
这道题主要利用了函数积分求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
  欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值