李永乐复习全书概率论与数理统计 第三章 多维随机变量及其分布

3.3  二维均匀分布和二维正态分布

例4  设随机变量 X X X的概率密度为 f ( x ) = { 1 9 x 2 , 0 < x < 3 , 0 , 其 他 . f(x)=\begin{cases}\cfrac{1}{9}x^2,&0<x<3,\\0,&其他.\end{cases} f(x)=91x2,0,0<x<3,.令随机变量 Y = { 2 , X ⩽ 1 , X , 1 < X < 2 , 1 , 2 ⩽ X . Y=\begin{cases}2,&X\leqslant1,\\X,&1<X<2,\\1,&2\leqslant X.\end{cases} Y=2,X,1,X1,1<X<2,2X.

(1)求 Y Y Y的分布函数;

   Y = { 2 , X ⩽ 1 , X , 1 < X < 2 , 1 , 2 ⩽ X , Y=\begin{cases}2,&X\leqslant1,\\X,&1<X<2,\\1,&2\leqslant X,\end{cases} Y=2,X,1,X1,1<X<2,2X,显然 Y Y Y是随机变量 X X X的函数,只是这函数是分段表示的, Y Y Y的取值: 1 ⩽ Y ⩽ 2 1\leqslant Y\leqslant2 1Y2。所以讨论 Y Y Y的分布函数 F Y ( y ) F_Y(y) FY(y)用分段讨论。
  当 y < 1 y<1 y<1时, F Y ( y ) = P { Y ⩽ y } ⩽ P { Y < 1 } = 0 F_Y(y)=P\{Y\leqslant y\}\leqslant P\{Y<1\}=0 FY(y)=P{Yy}P{Y<1}=0
  当 1 ⩽ y < 2 1\leqslant y<2 1y<2时,
F Y ( y ) = P { Y ⩽ y } = P { Y < 1 } + P { Y = 1 } + P { 1 < Y ⩽ y } = 0 + P { X ⩾ 2 } + P { 1 < X ⩽ y } = ∫ 2 3 1 9 x 2 d x + ∫ 1 y 1 9 x 2 d x = y 3 + 18 27 . \begin{aligned} F_Y(y)&=P\{Y\leqslant y\}=P\{Y<1\}+P\{Y=1\}+P\{1<Y\leqslant y\}\\ &=0+P\{X\geqslant2\}+P\{1<X\leqslant y\}\\ &=\displaystyle\int^3_2\cfrac{1}{9}x^2\mathrm{d}x+\displaystyle\int^y_1\cfrac{1}{9}x^2\mathrm{d}x=\cfrac{y^3+18}{27}. \end{aligned} FY(y)=P{Yy}=P{Y<1}+P{Y=1}+P{1<Yy}=0+P{X2}+P{1<Xy}=2391x2dx+1y91x2dx=27y3+18.
  当 2 ⩽ y 2\leqslant y 2y时, F Y ( y ) = P { Y ⩽ y } = P { Y ⩽ 2 } = 1 F_Y(y)=P\{Y\leqslant y\}=P\{Y\leqslant2\}=1 FY(y)=P{Yy}=P{Y2}=1
  总之, Y Y Y的分布函数为 F Y ( y ) = { 0 , y < 1 , y 3 + 18 27 , 1 < X < 2 , 1 , 2 ⩽ y . F_Y(y)=\begin{cases}0,&y<1,\\\cfrac{y^3+18}{27},&1<X<2,\\1,&2\leqslant y.\end{cases} FY(y)=0,27y3+18,1,y<1,1<X<2,2y.

(2)求概率 P { X ⩽ Y } P\{X\leqslant Y\} P{XY}

  因为 Y = { 2 , X ⩽ 1 , X , 1 < X < 2 , 1 , 2 ⩽ X . Y=\begin{cases}2,&X\leqslant1,\\X,&1<X<2,\\1,&2\leqslant X.\end{cases} Y=2,X,1,X1,1<X<2,2X.
P { X ⩽ Y } = P { X = Y } + P { X < Y } = P { 1 < X < 2 } + P { X ⩽ 1 } = P { X < 2 } = ∫ 0 2 1 9 x 2 d x = 8 27 . \begin{aligned} P\{X\leqslant Y\}&=P\{X=Y\}+P\{X<Y\}\\ &=P\{1<X<2\}+P\{X\leqslant1\}\\ &=P\{X<2\}=\displaystyle\int^2_0\cfrac{1}{9}x^2\mathrm{d}x=\cfrac{8}{27}. \end{aligned} P{XY}=P{X=Y}+P{X<Y}=P{1<X<2}+P{X1}=P{X<2}=0291x2dx=278.
这道题主要利用了二维正态分布求解

例5  设 ( X , Y ) ∼ N ( μ , μ ; σ 2 , σ 2 ; 0 ) (X,Y)\sim N(\mu,\mu;\sigma^2,\sigma^2;0) (X,Y)N(μ,μ;σ2,σ2;0),则 P { X < Y } = P\{X<Y\}= P{X<Y}=______。

   P { X < Y } = ∬ x < y 1 2 π σ 2 e − 1 2 σ 2 [ ( x − μ ) 2 + ( y − μ ) 2 ] d x d y P\{X<Y\}=\displaystyle\iint\limits_{x<y}\cfrac{1}{2\pi\sigma^2}e^{-\frac{1}{2\sigma^2}[(x-\mu)^2+(y-\mu)^2]}\mathrm{d}x\mathrm{d}y P{X<Y}=x<y2πσ21e2σ21[(xμ)2+(yμ)2]dxdy,用极坐标 { x − μ = ρ cos ⁡ θ , y − μ = ρ sin ⁡ θ , \begin{cases}x-\mu=\rho\cos\theta,\\y-\mu=\rho\sin\theta,\end{cases} {xμ=ρcosθ,yμ=ρsinθ,上式化为 P { X < Y } = 1 2 π σ 2 ∫ π 4 5 4 π d θ ∫ 0 + ∞ e − ρ 2 2 σ 2 ρ d ρ = 1 2 P\{X<Y\}=\cfrac{1}{2\pi\sigma^2}\displaystyle\int^{\frac{5}{4}\pi}_{\frac{\pi}{4}}\mathrm{d}\theta\displaystyle\int^{+\infty}_0e^{-\frac{\rho^2}{2\sigma^2}}\rho\mathrm{d}\rho=\cfrac{1}{2} P{X<Y}=2πσ214π45πdθ0+e2σ2ρ2ρdρ=21
  如果把 P { X < Y } P\{X<Y\} P{X<Y}化成 P { X − Y < 0 } P\{X-Y<0\} P{XY<0},则 X − Y ∼ N ( 0 , 2 σ 2 ) X-Y\sim N(0,2\sigma^2) XYN(0,2σ2),根据对称性 P { X − Y < 0 } = 1 2 P\{X-Y<0\}=\cfrac{1}{2} P{XY<0}=21
  如果注意到 ( X , Y ) (X,Y) (X,Y) X X X Y Y Y的对称性,则也有 P { X < Y } = P { Y < X } = 1 2 P\{X<Y\}=P\{Y<X\}=\cfrac{1}{2} P{X<Y}=P{Y<X}=21,因 P { X = Y } = 0 P\{X=Y\}=0 P{X=Y}=0。(这道题主要利用了概率密度函数的对称性求解

3.4  两个随机变量函数 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)的分布

例1  设随机变量 X X X Y Y Y相互独立,服从同一参数为 λ \lambda λ的泊松分布,试求:随机变量 Z = X + Y Z=X+Y Z=X+Y的分布律。

  因为 X X X Y Y Y相互独立且服从同一参数为 λ \lambda λ的泊松分布,所以
P { Z = k } = P { X + Y = k } = ∑ i = 0 k P { X = i , Y = k − i } = ∑ i = 0 k λ i e − λ i ! ⋅ λ k − i e − λ ( k − i ) ! = e − 2 λ ∑ i = 0 k λ k i ! ( k − i ) ! = e − 2 λ ∑ i = 0 k k ! i ! ( k − i ) ! ⋅ λ k k ! = e − 2 λ ⋅ λ k k ! ∑ i = 0 k C k i = e − 2 λ ⋅ λ k k ! ( 1 + 1 ) k = ( 2 λ ) k k ! e − 2 λ , k = 0 , 1 , 2 , ⋯ \begin{aligned} P\{Z=k\}&=P\{X+Y=k\}=\displaystyle\sum^k_{i=0}P\{X=i,Y=k-i\}=\displaystyle\sum^k_{i=0}\cfrac{\lambda^ie^{-\lambda}}{i!}\cdot\cfrac{\lambda^{k-i}e^{-\lambda}}{(k-i)!}\\ &=e^{-2\lambda}\displaystyle\sum^k_{i=0}\cfrac{\lambda^k}{i!(k-i)!}=e^{-2\lambda}\displaystyle\sum^k_{i=0}\cfrac{k!}{i!(k-i)!}\cdot\cfrac{\lambda^k}{k!}\\ &=e^{-2\lambda}\cdot\cfrac{\lambda^k}{k!}\displaystyle\sum^k_{i=0}\mathrm{C}^i_k=e^{-2\lambda}\cdot\cfrac{\lambda^k}{k!}(1+1)^k\\ &=\cfrac{(2\lambda)^k}{k!}e^{-2\lambda},k=0,1,2,\cdots \end{aligned} P{Z=k}=P{X+Y=k}=i=0kP{X=i,Y=ki}=i=0ki!λieλ(ki)!λkieλ=e2λi=0ki!(ki)!λk=e2λi=0ki!(ki)!k!k!λk=e2λk!λki=0kCki=e2λk!λk(1+1)k=k!(2λ)ke2λ,k=0,1,2,
  故 Z = X + Y Z=X+Y Z=X+Y服从参数为 2 λ 2\lambda 2λ的泊松分布。(这道题主要利用了二次项展开式求解

习题三

9.设随机变量 X X X Y Y Y相互独立, X ∼ B ( n , p ) , Y ∼ B ( m , p ) X\sim B(n,p),Y\sim B(m,p) XB(n,p),YB(m,p),试求 X + Y X+Y X+Y的分布。

   X ∼ B ( n , p ) , Y ∼ B ( m , p ) X\sim B(n,p),Y\sim B(m,p) XB(n,p),YB(m,p) X X X Y Y Y独立,可将 X X X看成 n n n次独立重复试验中成功次数。令 X i = { 1 , 在 X 的 n 次 试 验 中 第 i 次 试 验 成 功 , 0 , 在 X 的 n 次 试 验 中 第 i 次 试 验 失 败 , i = 1 , ⋯   , n X_i=\begin{cases}1,&在X的n次试验中第i次试验成功,\\0,&在X的n次试验中第i次试验失败,\end{cases}i=1,\cdots,n Xi={1,0,Xni,Xni,i=1,,n,显然 X = X 1 + ⋯ + X n X=X_1+\cdots+X_n X=X1++Xn。同样,令 Y j = { 1 , 在 Y 的 m 次 试 验 中 第 j 次 试 验 成 功 , 0 , 在 Y 的 m 次 试 验 中 第 j 次 试 验 失 败 , j = 1 , ⋯   , n Y_j=\begin{cases}1,&在Y的m次试验中第j次试验成功,\\0,&在Y的m次试验中第j次试验失败,\end{cases}j=1,\cdots,n Yj={1,0,Ymj,Ymj,j=1,,n,显然 Y = Y 1 + ⋯ + Y n Y=Y_1+\cdots+Y_n Y=Y1++Yn。由于 X X X Y Y Y独立,所以 X 1 , x 2 , ⋯   , X n , Y 1 , Y 2 , ⋯   , Y m X_1,x_2,\cdots,X_n,Y_1,Y_2,\cdots,Y_m X1,x2,,Xn,Y1,Y2,,Ym是相互独立的。 X + Y = X 1 + x 2 + ⋯ + X n + Y 1 + Y 2 + ⋯ + Y m X+Y=X_1+x_2+\cdots+X_n+Y_1+Y_2+\cdots+Y_m X+Y=X1+x2++Xn+Y1+Y2++Ym可看成每次成功率均为 p p p n + m n+m n+m次独立重复试验中成功的次数,所以 X + Y ∼ B ( n + m , p ) X+Y\sim B(n+m,p) X+YB(n+m,p)。(这道题主要利用了独立重复试验求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值