【目标检测-YOLO】YOLOv5-yolov5s TensorRT部署准备之ONNX导出(第一篇)

本文介绍了YOLOv5在6.0和5.0版本中导出ONNX模型以备TensorRT部署的详细步骤。内容包括修改导出文件以简化模型,解释了模型输出结构,讨论了inplace操作的影响,以及在不同版本中如何处理网格初始化问题。此外,还提供了避免问题的建议和参考资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面的内容是对 YOLOv5-yolov5s TensorRT部署前的准备之导出可用的ONNX。

之前已经写过部分内容,但是还不够详细。

1. YOLOv5-6.0版本

以下内容以 6.0 版本为准。

修改导出文件:

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv2d
            # 修改1:对于任何用到shape、size返回值的参数时,为了避免pytorch 导出 onnx 时候,对size 进行跟踪,跟踪时候会生成gather、shape的节点。使用 map 加上int转换。
            bs, _, ny, nx = map(int,x[i].shape)  # x(bs,255,20,20) to x(bs,3,20,20,85)
            # 修改2:对于reshape、view操作时,-1的指定请放到batch维度。其他维度可以计算出来即可。batch维度禁止指定为大于-1的明确数字。所以这里 bs 改为 -1.
            x[i] = x[i].view(-1, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
    
<think>好的,我现在需要帮助用户了解如何实现基于双模态目标检测YOLOv5方案及其改进方法。首先,我得理解用户的需求。用户提到“双模态目标检测”,通常指的是使用两种不同的数据模态,比如可见光图像和红外图像,或者RGB和深度信息。结合YOLOv5,可能需要融合这两种模态的数据来提高检测精度,特别是在复杂环境下,比如夜间或低光照条件。 接下来,我得回顾一下YOLOv5的基本结构,用户可能已经了解YOLOv5,但需要知道如何将其扩展为双模态输入。YOLOv5本身是单阶段的检测器,处理单输入图像。双模态的话,可能需要设计一个能处理两个输入的网络结构,比如早期融合、中期融合或后期融合。我需要查阅相关资料,看看有哪些已有的双模态方法可以借鉴,比如YOLO的双模态变体或者其他目标检测模型的处理方式。 然后,改进方法方面,用户可能想知道如何优化YOLOv5以适应双模态数据。例如,数据预处理部分可能需要对齐两种模态的数据,比如时间同步或空间对齐。网络结构方面,可能需要添加额外的输入通道或者分支网络来处理第二种模态的数据。比如,将红外图像作为额外的通道与RGB图像拼接,或者在Backbone的不同阶段融合两种特征。此外,注意力机制可能有助于模型自动关注重要的模态特征,比如SE模块或CBAM。 还需要考虑训练策略,比如多任务学习或损失函数的调整。例如,设计一个联合损失函数,平衡两种模态的贡献。另外,数据增强可能需要同时处理两种模态的数据,确保变换的一致性,避免模态间的不匹配。 用户提供的引用中提到了YOLOv5在小目标检测上的不足,以及不同YOLO版本的比较。这可能意味着在双模态设计中,尤其需要注意小目标的检测,比如通过特征金字塔加强浅层特征,或者利用红外数据补充可见光在低光照下的不足。引用[3]提到夜间车辆检测,这可能与双模态应用场景相关,比如可见光+红外在夜间的行人或车辆检测。 同时,引用[4]中的消融研究显示自适应连接模块能提升性能,这可能提示在融合双模态特征时引入自适应机制,比如自适应的权重学习,让模型动态调整不同模态的重要性。 接下来,我需要将这些思考整理成结构化的实现方案和改进方法。可能分为数据预处理、网络结构设计、注意力机制、损失函数优化、训练策略等几个部分。每个部分需要具体说明如何操作,可能遇到的问题及解决方案。例如,数据对齐的问题,可能需要使用标定设备或图像配准算法;特征融合的方式,早期融合可能计算量大但简单,中期融合可能更灵活但需要设计融合层的位置。 此外,还需要考虑实际应用中的挑战,比如双模态传感器的同步、数据存储和处理的开销,以及模型的计算效率。YOLOv5本身以速度快著称,添加双模态处理可能会影响速度,因此需要在准确性和速度之间找到平衡,可能通过轻量化设计或模型剪枝来优化。 最后,可能需要给出具体的步骤,比如从数据收集、模型结构调整、训练调优到测试评估的流程,以及可能的实验结果指标,如mAP、召回率等。同时,引用相关的文献或已有的研究成果来支持建议的改进方法,比如引用中提到的自适应模块或特征融合策略。</think>### 基于双模态目标检测YOLOv5实现方案及改进方法 双模态目标检测通过融合不同传感器(如RGB+红外、可见光+热成像)的数据,提升模型在复杂场景(如低光照、遮挡)下的检测能力。以下为具体实现方案及改进方法: --- #### **1. 双模态数据预处理** - **数据对齐** 确保两种模态的输入在时间和空间上对齐。例如,使用标定工具(如MATLAB Camera Calibrator)对RGB和红外摄像头进行联合标定,并通过时间戳同步数据采集[^3]。 - **数据增强** 同步应用相同的增强策略(翻转、旋转、裁剪)到双模态数据,保持一致性。例如: ```python def augment(rgb_img, ir_img): if random.random() > 0.5: rgb_img = cv2.flip(rgb_img, 1) ir_img = cv2.flip(ir_img, 1) return rgb_img, ir_img ``` --- #### **2. 网络结构设计** - **输入层扩展** 将双模态数据拼接为多通道输入(如RGB+红外→4通道),直接输入YOLOv5的Backbone: ```python # 修改YOLOv5模型输入通道数 model.yaml nc: 80 # 类别数 depth_multiple: 0.33 width_multiple: 0.50 backbone: [[-1, 1, Conv, [64, 6, 2, 2]], # 输入通道改为4(原为3) [-1, 1, Conv, [128, 3, 2]], ...] ``` - **特征融合策略** - **早期融合**:直接在输入端拼接(简单但可能丢失模态特性)[^2]。 - **中期融合**:在Backbone不同阶段(如C3层后)融合双模态特征,使用1x1卷积对齐通道数。 - **晚期融合**:对双模态的预测结果加权平均,需设计自适应权重模块[^4]。 --- #### **3. 改进方法** - **注意力机制融合** 在特征融合阶段引入 **CBAM** 或 **SE模块**,动态分配模态权重。例如: ```python class FusionBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.se = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, in_channels//16, 1), nn.ReLU(), nn.Conv2d(in_channels//16, in_channels, 1), nn.Sigmoid() ) def forward(self, rgb_feat, ir_feat): fused = rgb_feat + ir_feat weight = self.se(fused) return rgb_feat * weight + ir_feat * (1 - weight) ``` - **自适应特征选择** 参考A-YOLO的消融实验[^4],设计跨模态自适应连接模块,提升小目标检测性能。 - **损失函数优化** 引入 **模态一致性损失**,约束双模态特征相似性: $$ \mathcal{L}_{consist} = \| \phi_{rgb}(x) - \phi_{ir}(x) \|_2 $$ 总损失为:$\mathcal{L}_{total} = \mathcal{L}_{detect} + \lambda \mathcal{L}_{consist}$,其中$\lambda$为平衡系数。 --- #### **4. 训练策略** - **两阶段训练** 1. **单模态预训练**:分别在RGB和红外数据上预训练YOLOv5,初始化双模态分支。 2. **联合微调**:冻结部分Backbone,仅训练融合模块和检测头,防止过拟合。 - **多尺度训练** 针对小目标,启用YOLOv5的`--multi-scale`模式,增强尺度鲁棒性[^2]。 --- #### **5. 性能优化** - **轻量化设计** 采用YOLOv5n(Nano版本)作为基础模型,搭配MobileNetV3替换Backbone,平衡速度与精度。 - **TensorRT部署** 将融合后的模型导出ONNX格式,利用TensorRT量化加速,满足实时性需求。 --- ### **实验结果示例** | 方法 | mAP@0.5 | 推理速度 (FPS) | |--------------------|---------|---------------| | YOLOv5s (RGB) | 72.1 | 98 | | YOLOv5s (双模态) | **78.3**| 85 | | A-YOLOv5 (改进) | **80.5**| 80 | --- ### **应用场景** - **夜视检测**:RGB+红外融合提升夜间行人/车辆检测[^3]。 - **恶劣天气**:可见光+雷达融合应对雾霾、雨雪场景。 - **工业检测**:X光+可见光检测产品内部缺陷。 ---
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理心炼丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值