1. 下载源码:
wget https://github.com/ultralytics/yolov5/archive/refs/tags/v6.1.zip
unzip v6.1.zip && rm v6.1.zip
2. 添加 yolov5-6.1/data/VOCTVlogo2022.yaml。这里我是YOLO v5 训练自定义数据集_星魂非梦的博客-CSDN博客 复制的。
3. 下载预训练权重:
wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s6.pt
4. 修改超参数文件:hyp.scratch-TVlogo2022.yaml。下面是我修改后的。
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.
YOLOv5实践:训练自定义数据集与多GPU分布式训练

本文介绍了使用YOLOv5 v6.1进行目标检测的实践过程,包括下载源码、配置数据集、调整超参数、训练模型、恢复训练、使用TensorBoard监控训练曲线以及导出ONNX模型。在训练过程中,作者遇到了CUDA错误,通过使用DistributedDataParallel解决了多GPU训练的问题。
订阅专栏 解锁全文
3549

被折叠的 条评论
为什么被折叠?



