如何降低模型成本?Platypus:快速、廉价且强大的LLM,仅用一个 GPU 和 5 小时的LLaMA2 微调就击败了其他对手

文章介绍了Platypus项目,通过微调LLaMA-2模型,仅用一个GPU和5小时训练,就打造出在多个基准测试中表现优异的语言模型。Platypus强调数据集质量和计算效率,避免了测试集污染,并使用LoRA进行微调。这种方法在降低模型成本的同时,展示了小型模型在特定任务中的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何降低模型成本?

近年来,模型参数爆炸到数量巨大(PaLM 为 540 B)。有人提出的问题是这个参数数量是否必要。

根据 OpenAI 的说法,随着模型的增长,性能也会提高。此外,还出现了突现属性(除非在一定规模内才能观察到的属性)。

这种观点受到了以下事实的挑战:实际上更多的数据,因此扩展受到最佳训练模型所需的令牌数量的限制。此外,甚至这些新兴属性也可能不存在。

龙猫缩放定律,随着参数数量的增加,我们需要更多的数据来对其进行最佳训练
其次,这些专有模型不能被科学界自由分析或使用。因此,首先是BLOOM,然后是META 的 LLaMA,社区已转向使用开源模型。LLaMA还表明,对数据的更多关注使得较小的模型能够与较大的模型竞争。

然而,另一方面,小模型不能像大模型一样具有泛化能力。然而,这导致人们寻找降低这些模型成本的技术,例如知识蒸馏(教师模型教授学生模型)。后来的方法试图通过提取数据集(从大型训练数据集开始,到较小但同时有效的数据集)来进一步降低成本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值