【机器人+VLA】25.03 GR00T N1:英伟达第一个开源的通用的人形机器人VLA模型

发布时间: 2025年3月19日

官方Git: https://github.com/NVIDIA/Isaac-GR00T/

论文pdf: https://d1qx31qr3h6wln.cloudfront.net/publications/GR00T_1_Whitepaper.pdf

中文翻译:VLA 论文精读(二)GR00T N1: An Open Foundation Model for Generalist Humanoid Robots

模型下载:https://huggingface.co/nvidia/GR00T-N1-2B

B站视频【NVIDIA发布 https://www.bilibili.com/video/BV16DZoYEES6/

简介

GR00T:全称为 Generalist Robot 00 Technology(通用机器人00技术)

全球首个开源且完全可定制的基础模型 NVIDIA Isaac GR00T N1,该模型接受包括语言和图像在内的多模态输入,以在不同的环境中执行操作任务,可赋能通用人形机器人实现推理及各项技能。

GR00T N1 可以轻松地实现各种常见任务 (例如抓取、用一只或两只手臂移动物体以及将物品从一只手臂转移到另一只手臂) ,也可以执行需要较长背景和常规技能组合的多步骤任务。这些功能可应用于多个用例,包括物料搬运、包装和检查。

核心功能与架构设计

此架构模仿人类认知的“双系统理论”,兼顾实时控制与复杂决策,显著提升机器人通用性

系统1(快思考):

基于扩散变换器(Diffusion Transformer)的动作生成模型,负责快速响应环境变化并执行精确运动(如抓取、避障)

系统2(慢思考):

由视觉语言模型(VLM)驱动的推理与规划模块,支持语言指令解析、长上下文任务分解(如多步骤搬运)

进一步的架构图3:GRO0TN1模型架构。

GROOTN1在从单臂机械臂到双人手型灵巧手的各种化身上进行训练。为了处理不同机器人化身的状态观察和动作,我们使用DiT块,其中包含一个化身意识的状态和动作编码器,以嵌入机器人的状态和动作输入。GROOTN1模型利用Eagle-2模型的潜在嵌入,以整合机器人的视觉观察和语言指令。然后,视觉语言令牌将通过交叉注意力层馈送到DiT

数据策略与训练方法

底层:大规模互联网视频数据(如人类操作视频),提供基础行为模式

中层:Omniverse生成的合成数据(如模拟工厂场景),加速训练并降低成本

顶层:真实机器人遥操作数据,弥合仿真与现实的差距

合成数据优势: 通过 GR00T Blueprint 工具,11小时可生成等效9个月的人类演示数据,使模型训练效率提升40%

技术突破与意义

通用性:通过单一模型适配多机器人硬件(如Fourier GR-1、1X Neo)

适应性:支持少量真实数据微调,快速迁移至新任务和环境

产业价值:加速人形机器人在制造业、医疗等领域的商业化落地,应对全球劳动力短缺问题

### VLA机器人控制中的作用 视觉-语言-动作(Vision-Language-Action, VLA模型是一种融合了计算机视觉、自然语言处理和机器人学的技术框架,其核心目标是使机器人能够理解人类的语言指令并将其转化为具体的物理行为。VLA 技术的发展显著提升了机器人的灵活性和适应能力。 #### 1. **VLA 的基本功能** VLA 模型通过结合预训练的视觉语言模型 (Visual Language Model, VLM) 和特定于机器人的动作模块,实现了从感知到行动的端到端映射[^2]。这种架构允许机器人接收自然语言输入,并根据上下文生成相应的动作序列。例如,在 Helix 控制技术中,VLA 被用来实现对整个上半身的高度协调控制,包括手腕、躯干、头部甚至单个手指的动作[^1]。 #### 2. **VLA机器人控制中的具体应用** ##### (1)**通用任务执行** 借助 VLA 模型机器人可以完成多种复杂任务而无需针对每种任务重新设计控制系统。例如,Pi0 使用了一个跨体现的数据集来学习不同类型的灵巧操作技能,并通过添加一个专门的动作专家模块来优化这些技能的表现[^3]。这使得 Pi0 可以轻松应对诸如抓取物体、打开门或堆叠物品等多样化场景。 ##### (2)**基于提示的任务推理** VLA 不仅限于简单的命令跟随;它还支持更高级别的认知活动,比如基于提示的任务推理。这意味着当用户提供一段描述性的文字说明时,机器人可以根据自己的经验库推断出如何完成这项工作。这种方法特别适合那些未被明确编程过的新型挑战情境。 ##### (3)**动态环境下的实时响应** 由于采用了流匹配算法生成连续平滑的动作轨迹,即使面对不断变化的情况,装备有先进 VLA 系统的设备也能保持稳定高效的性能表现。这对于需要快速反应的应用场合尤为重要,如搜救作业或是生产线上的质量检测环节。 #### 3. **未来发展方向与潜力** 随着研究深入和技术进步,预计未来的 VLA 将更加注重以下几个方面: - 提高泛化能力和鲁棒性; - 减少对于大量标注数据依赖程度的同时提升效率; - 推动多模态交互方式创新以便更好地服务于人类社会需求。 ```python def vla_robot_control(task_description): """ Simulates a basic function of how an advanced robot might use VLA to interpret and execute tasks. Args: task_description (str): A natural language string describing the desired action. Returns: str: Feedback indicating success or failure after attempting execution based on input description. """ vl_model_output = process_language_and_vision_data(task_description) continuous_actions = generate_smooth_action_sequence(vl_model_output) try_execute(continuous_actions) return "Task executed successfully!" if verify_outcome() else "Failed to perform requested operation." ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曾小蛙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值