【具有离散信号的可重构智能表面(RIS)辅助通信系统中】通过截断速率优化RIS辅助MIMO系统研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着无线通信技术朝着更高频谱效率、更高能量效率和更高连接密度的方向发展,传统的网络架构面临着日益严峻的挑战。可重构智能表面(Reconfigurable Intelligent Surface, RIS)作为一种新兴技术,凭借其低成本、低功耗以及灵活调控电磁波传输环境的能力,为下一代无线通信网络带来了革新的可能性。RIS能够通过动态调整其表面反射单元的相位,实现对无线信号的波束赋形、信号增强、干扰抑制等多种功能,从而提升无线通信系统的整体性能。本文将重点探讨RIS辅助的多输入多输出(MIMO)系统,尤其是在RIS单元采用离散相位调制的情况下,如何通过截断速率优化来提升系统的可靠性和吞吐量。

RIS辅助的MIMO系统为传统的MIMO通信引入了新的自由度。在传统MIMO系统中,信号的传输主要依赖于基站和用户设备之间的直接链路,而RIS的加入则创建了额外的反射路径,使得系统可以利用这些路径来改善信号质量。然而,RIS的引入也带来了一些新的挑战。首先,由于RIS通常由大量的低成本反射单元组成,其相位调制精度受到限制,往往只能采用离散的相位值。这种离散性会对波束赋形的性能产生影响,甚至可能导致严重的性能损失。其次,RIS的设计需要考虑信道环境的动态变化,如何快速有效地配置RIS的相位,以适应不同的信道条件,也是一个关键问题。

截断速率(Truncated Rate)是一种用于评估无线通信系统性能的指标,尤其是在信道状态信息(Channel State Information, CSI)不完全已知的情况下。与香农容量不同,截断速率考虑了实际通信系统中可能存在的错误概率,以及信道估计的不确定性。因此,基于截断速率的优化能够更有效地提高系统的可靠性,降低误码率。在RIS辅助的MIMO系统中,由于信道估计的复杂性,以及RIS单元离散相位调制带来的不确定性,采用截断速率作为优化目标具有重要的实际意义。

本文将围绕以下几个方面展开研究:

1. RIS辅助MIMO系统信道模型构建: 准确的信道模型是进行系统优化和性能分析的基础。本文将建立一个包含基站、用户设备和RIS的MIMO信道模型。该模型将考虑基站到RIS、RIS到用户设备、以及基站到用户设备的直接链路的信道特性。此外,模型还将考虑信道中的多径衰落、阴影衰落等因素,以及RIS单元的离散相位调制特性。

2. 离散相位调制的RIS波束赋形设计: 由于RIS单元通常采用低成本的反射单元,其相位调制精度受到限制,往往只能采用有限数量的离散相位值。本文将研究如何在离散相位约束下,设计最优的RIS波束赋形向量。这可以通过多种优化算法来实现,例如,穷举搜索、交替优化、基于梯度的方法、以及启发式算法等。在设计过程中,需要充分考虑信道状态信息的不确定性,以及RIS单元之间的耦合效应。

3. 基于截断速率的RIS辅助MIMO系统优化: 本文将以截断速率最大化为目标,对RIS辅助MIMO系统进行优化。考虑到信道状态信息的不完全已知,我们将采用稳健的优化方法,以保证系统在各种信道条件下都能获得较好的性能。具体的优化策略包括:

  • 联合优化:

     同时优化基站的预编码矩阵和RIS的相位矩阵,以最大化系统的截断速率。这通常是一个非凸优化问题,需要采用迭代的优化算法来求解。

  • 分离优化:

     将基站的预编码和RIS的相位优化分别进行,以降低计算复杂度。例如,可以先优化基站的预编码矩阵,然后在给定基站预编码矩阵的情况下,优化RIS的相位矩阵。

  • 基于机器学习的方法:

     利用深度学习等机器学习技术,学习RIS的相位配置策略,以适应不同的信道环境。这种方法可以避免复杂的数学建模和优化过程,提高系统的自适应能力。

4. RIS单元数量对系统性能的影响分析: RIS单元的数量直接影响RIS的波束赋形能力和覆盖范围。本文将分析RIS单元数量对系统截断速率的影响,并探讨在不同的信道条件下,如何选择合适的RIS单元数量,以达到最佳的性能和成本效益。

5. 系统仿真与性能评估: 为了验证所提出的优化算法和分析结果的有效性,本文将进行系统的仿真实验。仿真实验将包括不同的信道环境、不同的RIS配置参数、以及不同的优化算法。通过仿真结果,我们将对系统的截断速率、误码率、频谱效率等性能指标进行评估,并与传统的MIMO系统进行比较,以展示RIS辅助MIMO系统的优势。

6. 针对现有算法的改进与创新: 现有针对RIS辅助MIMO系统的优化算法,例如,交替优化算法,可能存在收敛速度慢、计算复杂度高等问题。因此,本文将尝试提出改进的优化算法,例如,基于ADMM(Alternating Direction Method of Multipliers)的分布式优化算法,以提高算法的效率和可扩展性。此外,本文还将探索新的优化方法,例如,基于深度强化学习的方法,以实现RIS的自适应配置。

结论:

RIS作为一种新兴的无线通信技术,具有广阔的应用前景。通过合理的设计和优化,RIS能够有效地提升无线通信系统的性能,尤其是在提高系统的可靠性和频谱效率方面。本文将通过对具有离散信号的RIS辅助MIMO系统进行截断速率优化研究,旨在为RIS技术的实际应用提供理论指导和技术支持。未来的研究方向可以包括:

  • RIS与其他技术的融合:

     例如,将RIS与正交频分复用(OFDM)、非正交多址接入(NOMA)等技术相结合,以进一步提高系统的性能。

  • 动态RIS配置:

     研究如何根据信道环境的动态变化,实时调整RIS的相位配置,以实现最佳的系统性能。

  • RIS的安全性能:

     关注RIS辅助通信系统的安全问题,例如,如何防止RIS被恶意攻击,以及如何利用RIS来提高通信的安全性。

⛳️ 运行结果

🔗 参考文献

[1] 罗欣,杜建和,张耀,等.可重构智能表面辅助近场通信感知一体化系统基于嵌套张量的同时定位与通信方法[J].电子与信息学报, 2025, 47:1-12.DOI:10.11999/JEIT240566.

[2] 邵凯,鲁奔,王光宇.可重构智能表面辅助通信系统时变级联信道估计[J].通信学报, 2024, 45(1):119-128.DOI:10.11959/j.issn.1000-436x.2024028.

[3] 陈迎新,岳殿武,任静,等.多可重构智能表面辅助通信系统的性能研究[J].无线电工程, 2022, 52(12):2124-2131.DOI:10.3969/j.issn.1003-3106.2022.12.004.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值