Deepsort_V2 2020中兴捧月阿尔法赛道多目标检测和跟踪初赛第一名

本文介绍了2020年中兴捧月阿尔法赛道多目标检测和跟踪初赛夺冠方案。关键在于使用Cascade-RCNN(HRNet为backbone)作为检测算法,以及改进版的Deepsort结合蒸馏的ReID模型进行跟踪。项目执行通过配置虚拟内存,并提供了执行脚本。在数据集分析中,考虑了人群密度、光照变化、视角多样性和行人速度等因素。
摘要由CSDN通过智能技术生成

2020中兴捧月阿尔法赛道多目标检测和跟踪初赛第一名方案

初赛:多目标跟踪;指标MOTA和MOTP, 后期的大量实验证明检测算法相对于跟踪更重要。

数据集分析:

1.人群密集稀疏场景;

2.场景(白天,黑夜)

3.光照变化丰富。

4.多方向视角,方向变化大;

5.行人速度有快又慢。

Config

Detection:

Cascade-RCNN(HRNet) 基于mmdetection框架。
采用多尺度训练(1216,608)和(1024,2048), 多尺度测试:(1216,608),(1632,816)(2048,1024)
常见数据增强crop 翻转,pad等
丢帧后处理线性平滑
修正框小于1==1
多epoch平均的AWS

B榜 新增2个挑战: 更密集的人群和遮挡

初赛不看速度要求,选择SOTA检测算法,Cascade-RCNN ,其中选择HRNet作为backbone。

Reid 模型 尝试了Deepsort自带的 类似于R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值