2020中兴捧月阿尔法赛道多目标检测和跟踪初赛第一名方案
初赛:多目标跟踪;指标MOTA和MOTP, 后期的大量实验证明检测算法相对于跟踪更重要。
数据集分析:
1.人群密集稀疏场景;
2.场景(白天,黑夜)
3.光照变化丰富。
4.多方向视角,方向变化大;
5.行人速度有快又慢。
Config
Detection:
Cascade-RCNN(HRNet) 基于mmdetection框架。
采用多尺度训练(1216,608)和(1024,2048), 多尺度测试:(1216,608),(1632,816)(2048,1024)
常见数据增强crop 翻转,pad等
丢帧后处理线性平滑
修正框小于1==1
多epoch平均的AWS
B榜 新增2个挑战: 更密集的人群和遮挡
初赛不看速度要求,选择SOTA检测算法,Cascade-RCNN ,其中选择HRNet作为backbone。
Reid 模型 尝试了Deepsort自带的 类似于R