YOLOv5改进 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样)

本文介绍了使用Haar小波的下采样HWD来替换YOLOv5中的传统Conv下采样,以此降低模型参数和计算量。详细阐述了HWD的原理,提供了核心代码修改步骤,并分享了HWD的yaml配置文件和训练过程截图。通过这一改进,可以在保持图像质量的同时,实现模型的轻量化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进机制是Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样)在小波变换中,Haar小波作为一种基本的小波函数,用于将图像数据分解为多个层次的近似和细节信息,这是一种多分辨率的分析方法。我将其用在YOLOv5上其明显降低参数和GFLOPs在V5n上使用该机制后参数量为147W计算量GFLOPs为3.7,欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

  欢迎大家订阅我的专栏一起学习YOLO!  

 专栏回顾: YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

一、本文介绍

二、原理介绍

三、核心代码 

四、手把手教你添加HWD机制

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、HWD的yaml文件和运行记录

5.1 HWD的yaml文件

### YOLOv5 上采样与下采样的定义及差异 #### 下采样计算机视觉领域,特别是对于像YOLOv5这样的卷积神经网络模型来说,下采样是指通过一系列操作减少特征图的空间维度的过程。这通常是为了降低计算复杂度并提取更高级别的语义信息。常见的实现方法包括最大池化层(Max Pooling)以及带有步幅(stride)大于1的卷积层。 - **作用**: 减少输入尺寸的同时增加感受野大小, 提取高层次抽象特征. ```python import torch.nn as nn downsample_layer = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1) ``` [^4] #### 上采样 相反地,上采样则是指将低分辨率特征映射恢复到较高分辨率的操作,在物体检测任务中用于融合多尺度信息。YOLOv5采用了多种技术来完成这一过程,其中最常用的是转置卷积(Deconvolution),也称为反卷积或分数阶卷积。此外还有其他简单有效的插值方法如最近邻插值(Nearest Neighbor Interpolation), 双线性插值(Bilinear Interpolation)等可供选择。 - **作用**: 增加空间分辨率以便更好地定位目标位置. ```python upsample_layer = nn.Upsample(scale_factor=2, mode='nearest') ``` [^3] 两者的主要区别在于处理方向的不同——下采样是从高维向低维转换,而上采样则反之;另外就是应用场景上的差别,前者主要用于编码器部分以获取更具代表性的特征表示,后者更多应用于解码阶段帮助重建原始图像结构或是提高预测框精度。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值