FOC电机数学模型

一、基于α-β坐标系

1)电流模型

I_{\alpha} = I_{a}\\ I_{\beta} = \frac{(I_{a} + 2I_{b})}{\sqrt{3}}\\
2)电压模型

U_{\alpha} = R_{s}I_{\alpha}+L_{s}\frac{d_{i\alpha}}{d_{t}}+E_{\alpha}\\ U_{\beta}=R_{s}I_{\beta}+L_{s}\frac{d_{i\beta}}{dt}+E_{\beta}\\

U_{\alpha} = R_{s}I_{\alpha}+L_{s}\frac{d_{i\alpha}}{d_{t}} +\omega_{e}(L_d-L_q)I_{\beta}+E_{\alpha}\\ U_{\beta}=R_{s}I_{\beta}+L_{s}\frac{d_{i\beta}}{dt} -\omega{e}(L_d-Lq)I_{\alpha}+E_{\beta}\\

Rs:定子的电阻

Ls:定子的电感

Eα,Eβ:反电动势

3)反电动势模型

E_{\alpha} = -\omega_{e}\varphi_{f}\sin({\theta})\\ E_{\beta} = \omega_{e}\varphi_{f}\cos({\theta})\\

we:电转速,单位rad/s

ψf​:永磁体磁链,单位韦伯

θ为转子位置角,单位rad

二、基于d-q坐标系

1)电流模型

I_{d} = I_{\alpha}\cos(\theta)+I_{\beta}\sin(\theta)\\ I_{q}=-I_{\alpha}\sin(\theta)+I_{\beta}\cos(\theta)\\

2)电压模型

U_{d}=R_{d}I_{d}+Ld\frac{d_{I_d}}{d_t}-\omega_{e}L_{q}I_{q}\\ U_{q}=R_{q}I_{q}+Lq\frac{d_{I_q}}{d_t}+\omega_{e}L_{d}I_{d}+\omega_{e}\varphi_{f}\\

3)转矩模型

T_{e} = \frac{3}{2}N_{polepairs}(\varphi_{f}I_{q}+(L_d-L_q)I_{d}I_{q})\\

ψf​:永磁体磁链,单位韦伯

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值