术语 fuzzy 是指不清楚或模糊的事物。在现实世界中,我们很多时候会遇到无法判断状态是真是假的情况,他们的模糊逻辑为推理提供了非常有价值的灵活性。通过这种方式,我们可以考虑任何情况的不准确和不确定性。
模糊逻辑是一种多值逻辑形式,其中变量的真值可以是 0 到 1 之间的任何实数,而不仅仅是传统的 true 或 false 值。它用于处理不精确或不确定的信息,是一种表示决策中的模糊性和不确定性的数学方法。
Fuzzy Logic 基于这样一种想法,即在许多情况下,真或假的概念过于严格,并且两者之间有许多灰色阴影。它允许部分真理,其中陈述可以是部分正确或错误,而不是完全正确或错误。
Fuzzy Logic 应用广泛,例如控制系统、图像处理、自然语言处理、医疗诊断和人工智能。
模糊逻辑的基本概念是隶属函数,它定义输入值与特定集或类别的隶属程度。隶属度函数是从输入值到介于 0 和 1 之间的隶属度的映射,其中 0 表示非隶属度,1 表示完全隶属度。
模糊逻辑是使用模糊规则实现的,模糊规则是 if-then 语句,以模糊方式表示输入变量和输出变量之间的关系。Fuzzy Logic 系统的输出是一个模糊集,它是每个可能的输出值的一组隶属度。
总之,模糊逻辑是一种在决策中表示模糊性和不确定性的数学方法,它允许部分真理,并且应用广泛。它基于成员函数的概念,并使用 Fuzzy 规则实现。
在布尔系统真值中,1.0 表示绝对真值,0.0 表示绝对真值。但在模糊系统中,绝对真值和绝对假值没有逻辑。但是在模糊逻辑中,也存在一个中间值,它部分正确,部分错误。
建筑
它的架构包含四个部分:
- 规则库:它包含专家提供的规则集和 IF-THEN 条件,用于根据语言信息管理决策系统。模糊理论的最新发展为模糊控制器的设计和调整提供了几种有效的方法。这些发展中的大多数都减少了模糊规则的数量。
- 模糊化:它用于将输入(即清晰的数字)转换为模糊集。Crisp 输入基本上是由传感器测量并传递到控制系统进行处理的精确输入,例如温度、压力、rpm 等。
- 推理引擎:它确定当前模糊输入相对于每个规则的匹配程度,并根据输入字段决定要触发哪些规则。接下来,将触发的规则组合在一起以形成控制作。
- DEFUZZIFICATION:用于将推理引擎获取的模糊集转换为 crisp 值。有几种可用的去模糊化方法,最适合的一种方法与特定的 Expert 系统一起使用以减少错误。
会员功能
定义:定义如何将输入空间中的每个点映射到介于 0 和 1 之间的成员资格值的图形。输入空间通常被称为话语宇宙或通用集 (u),它包含每个特定应用程序中所有可能的关注元素。
模糊符主要有三种类型:
- 单例模糊处理器
- Gaussian fuzzifier (高斯模糊器)
- 梯形或三角形模糊器
什么是模糊控制?
- 这是一种将类似人类的思维体现在控制系统中的技术。
- 它可能不是为了给出准确的推理而设计的,但它是为了给出可接受的推理。
- 它可以模仿人类的演绎思维,即人们用来从他们所知道的事物中推断结论的过程。
- 任何不确定性都可以在模糊逻辑的帮助下轻松处理。
Fuzzy Logic System 的优势
- 该系统可以处理任何类型的输入,无论是不精确、失真还是嘈杂的输入信息。
- Fuzzy Logic Systems 的构造简单易懂。
- 模糊逻辑带有集合论的数学概念,其推理非常简单。
- 它为生活各个领域的复杂问题提供了非常有效的解决方案,因为它类似于人类的推理和决策。
- 这些算法可以用很少的数据来描述,因此需要的内存很少。
Fuzzy Logic Systems 的缺点
- 许多研究人员提出了不同的方法,通过模糊逻辑来解决给定的问题,这导致了歧义。没有系统的方法可以通过模糊逻辑来解决给定的问题。
- 在大多数情况下,证明其特性是困难或不可能的,因为每次我们都没有得到我们方法的数学描述。
- 由于模糊逻辑适用于精确和不精确的数据,因此大多数情况下准确性会受到影响。
应用
- 它在航空航天领域用于航天器和卫星的高度控制。
- 它已用于汽车系统的速度控制、交通控制。
- 它用于大公司业务中的决策支持系统和个人评估。
- 它在化学工业中可用于控制 pH 值、干燥、化学蒸馏过程。
- 模糊逻辑用于自然语言处理和人工智能中的各种密集型应用程序。
- 模糊逻辑广泛用于现代控制系统,例如专家系统。
- Fuzzy Logic 与 Neural Networks 一起使用,因为它模仿了一个人的决策方式,只是速度要快得多。它是通过聚合数据并通过将部分真值形成模糊集将其转换为更有意义的数据来完成的。