S面积:
已知三点 (x1,y1)、(x2,y2)、(x3,y3)的坐标,可以利用凸包面积公式计算三角形面积:面积
S=(1/2)*|x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2)|
公式解释:|x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2)|
是平面上的三角形的面积,x1、x2、x3、y1、y2、y3 分别是三点的坐标.
举例:(0,0) , (2,3) , (4,1)
三点坐标为:(x1,y1)= (0,0) (x2,y2)= (2,3)(x3,y3)= (4,1)
应用公式计算面积:S = (1/2) * | 0*(3-1) + 2*(1-0) + 4*(0-3)| = (1/2) * 6 = 3
所以三角形的面积为 3
***结论:**
```cpp
const Eigen::Vector2d p1;
const Eigen::Vector2d p2;
const Eigen::Vector2d p3;
const double denominator = std::max((p1 - p2).norm() * (p2 - p3).norm() * (p3 - p1).norm(), 0.0001);// #abc
const double curvature =
2.0 * ((p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0])) / denominator; //# 4* (1/2*value)