《概率机器人》学习笔记一

第一章 绪论

1.1 机器人学中的不确定性

机器人必须能接纳客观世界中存在的大量的不确定性因素。有很多因素导致了机器人的不确定性:

机器人环境

传感器

机器人的执行机构

机器人软件

近似算法

1.2 概率机器人学

概率机器人学致力于研究机器人感知和行为的不确定性。概率机器人的主要思想是利用概率理论的运算去明确地表示这种不确定性。

1.3 启示

概率机器人将模型与传感器数据进行了无缝集成,同时克服了两者的局限性。

与传统的基于模型的机器人技术相比,概率算法对机器人模型的精度要求较低。概率算法对传感器的精度要求比许多反应技术也要低,其唯一的控制输入即为瞬时传感器的输入。

从概率的角度,机器人学习问题(robotic learning problem)就是一个长期的估计问题。

概率算法局限性:计算复杂性、近似的必然性。











评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值