02.第二章 随机过程基本概念

第二章 随机过程基本概念

1.随机过程的定义,分布

假设 ( Ω , A , P ) (\Omega,\mathcal A,P) (Ω,A,P)是概率空间, T T T是指标集, E \mathcal E E是点集。称一族随机变量 X ( ω , t ) : Ω → E , t ∈ T X(\omega,t):\Omega\to \mathcal E,t\in T X(ω,t):ΩE,tT为随机过程,记作 X = ( X ( t ) , t ∈ T ) \boldsymbol X=(X(t),t\in T) X=(X(t),tT)。这里 T T T是时间参数空间, E \mathcal E E为状态空间。简略起见, X \boldsymbol X X在时间 t t t时刻的随机变量记作 X ( t ) X(t) X(t) X t X_t Xt

  • 时间参数空间 T T T一般有 R , R + , [ 0 , 1 ] , Z , Z + , N \R,\R^+,[0,1],\Z,\Z^+,\N R,R+,[0,1],Z,Z+,N等,它们都有自然的“序”关系。
  • 任给一个 ω ∈ Ω \omega\in \Omega ωΩ X ( ω , ⋅ ) X(\omega,\cdot) X(ω,)为样本曲线。也就是说,样本曲线是随机过程在 T T T上的一次观测。

既然随机过程是一族随机变量按照某种序关系排列而成,那么随机过程也拥有其概率分布。以 E = R , T = R \mathcal E=\R,T=\R E=R,T=R为例,随机过程有如下的有限维分布:

  1. 一维分布:给定 t ∈ T t\in T tT X ( t ) X(t) X(t)的分布函数为
    F t ( x ) = P ( X ( t ) ≤ x ) ; F_t(x)=P(X(t)\le x); Ft(x)=P(X(t)x);

  2. 二维分布:给定 s , t ∈ T s,t\in T s,tT ( X ( s ) , X ( t ) ) (X(s),X(t)) (X(s),X(t))的联合分布为
    F s , t ( x , y ) = P ( X ( s ) ≤ x , X ( t ) ≤ y ) ; F_{s,t}(x,y)=P(X(s)\le x,X(t)\le y); Fs,t(x,y)=P(X(s)x,X(t)y);

  3. k k k维分布:给定 t 1 , ⋯   , t k ∈ T t_1,\cdots,t_k\in T t1,,tkT ( X ( t 1 ) , ⋯   , X ( t k ) ) (X(t_1),\cdots,X(t_k)) (X(t1),,X(tk))的联合分布为
    F t 1 , ⋯   , t k ( x 1 , ⋯   , x k ) = P ( X ( t 1 ) ≤ x 1 , ⋯   , X ( t k ) ≤ x k ) . F_{t_1,\cdots,t_k}(x_1,\cdots,x_k)=P(X(t_1)\le x_1,\cdots,X(t_k)\le x_k). Ft1,,tk(x1,,xk)=P(X(t1)x1,,X(tk)xk).

有限维分布并不容易计算,对于某些特殊情况,可以用其他方法计算。

  • 如果 X ( t 1 ) , X ( t 2 ) − X ( t 1 ) , ⋯   , X ( t k ) − X ( t k − 1 ) X(t_1),X(t_2)-X(t_1),\cdots,X(t_k)-X(t_{k-1}) X(t1),X(t2)X(t1),,X(tk)X(tk1)的联合分布容易计算,则可以通过 ∣ J ∣ = 1 |J|=1 J=1的线性变换得到 k k k维分布。
    { X ( t 1 ) = X ( t 1 ) , X ( t 2 ) = X ( t 1 ) + [ X ( t 2 ) − X ( t 1 ) ] , ⋯ ⋯ X ( t k ) = X ( t 1 ) + [ X ( t 2 ) − X ( t 1 ) ] + ⋯ + [ X ( t k ) − X ( t k − 1 ) ] . \left\{ \begin{aligned} X(t_1)=&X(t_1),\\ X(t_2)=&X(t_1)+[X(t_2)-X(t_1)],\\ \cdots&\cdots\\ X(t_k)=&X(t_1)+[X(t_2)-X(t_1)]+\cdots+[X(t_k)-X(t_{k-1})]. \end{aligned} \right. X(t1)=X(t2)=X(tk)=X(t1),X(t1)+[X(t2)X(t1)],X(t1)+[X(t2)X(t1)]++[X(tk)X(tk1)].

  • 如果容易计算条件概率,则可以由链式法则计算联合分布。
    P ( X ( t 1 ) = x 1 , ⋯   , X ( t k ) = x k ) = P ( A 1 ⋯ A k ) = P ( A 1 ) P ( A 2 ∣ A 1 ) ⋯ P ( A k ∣ A k − 1 A k − 2 ⋯ A 1 ) \begin{aligned} &P(X(t_1)=x_1,\cdots,X(t_k)=x_k)\\ =&P(A_1\cdots A_k)\\ =&P(A_1)P(A_2|A_1)\cdots P(A_k|A_{k-1}A_{k-2}\cdots A_1) \end{aligned} ==P(X(t1)=x1,,X(tk)=xk)P(A1Ak)P(A1)P(A2A1)P(AkAk1Ak2A1)

2.随机过程的数字特征,特殊过程

随机过程也有类似于随机变量的数字特征,它更多地定义在时间参数空间上。下面是单随机过程 X \boldsymbol X X的一些数字特征。

  • 均值函数:假设对每一个 t ∈ T , E ∣ X ( t ) ∣ < ∞ t\in T,E|X(t)|<\infty tT,EX(t)<,则称
    μ X ( t ) = E [ X ( t ) ] , t ∈ T \mu_X(t)=E[X(t)],\quad t\in T μX(t)=E[X(t)],tT
    X \boldsymbol X X的均值函数。

  • 方差函数:假设对每一个 t ∈ T , E ( X ( t ) ) 2 < ∞ t\in T,E(X(t))^2<\infty tT,E(X(t))2<,则称
    σ X 2 ( t ) = D ( X ( t ) ) , t ∈ T \sigma^2_X(t)=D(X(t)),\quad t\in T σX2(t)=D(X(t)),tT
    X \boldsymbol X X的方差函数。

  • 自相关函数与自协方差函数:对于 s , t ∈ T s,t\in T s,tT,定义自相关函数与自协方差函数分别为
    r X ( s , t ) = E [ X ( s ) X ( t ) ] , s , t ∈ T C o v ( X ( s ) , X ( t ) ) = r X ( s , t ) − μ X ( s ) μ X ( t ) , s , t ∈ T r_X(s,t)=E[X(s)X(t)],\quad s,t\in T\\ Cov(X(s),X(t))=r_X(s,t)-\mu_X(s)\mu_X(t),\quad s,t\in T rX(s,t)=E[X(s)X(t)],s,tTCov(X(s),X(t))=rX(s,t)μX(s)μX(t),s,tT

对于两个随机过程 X , Y \boldsymbol X,\boldsymbol Y X,Y,定义互相关函数为
r X , Y ( s , t ) = E [ X ( s ) Y ( t ) ] , s , t ∈ T r_{X,Y}(s,t)=E[X(s)Y(t)],\quad s,t\in T rX,Y(s,t)=E[X(s)Y(t)],s,tT
依托于以上数字特征,可以定义一些特殊的随机过程类。

  • 宽平稳过程:对于二阶矩过程 X \boldsymbol X X ∀ t ∈ T , E ( X ( t ) ) 2 < ∞ \forall t\in T,E(X(t))^2<\infty tT,E(X(t))2<,如果满足

    1. μ X ( t ) = μ \mu_X(t)=\mu μX(t)=μ,即均值函数为常数;
    2. r X ( s , t ) = τ X ( s − t ) r_X(s,t)=\tau_X(s-t) rX(s,t)=τX(st),即自相关函数只是时间差的函数;

    则这样的随机过程称为宽平稳过程。

  • 严平稳过程:对于随机过程 X = ( X ( t ) , t ∈ T ) \boldsymbol X=(X(t),t\in T) X=(X(t),tT)(没有二阶矩要求),如果对任意 k ≥ 1 k\ge 1 k1 t 1 , ⋯   , t k ∈ T t_1,\cdots,t_k \in T t1,,tkT以及 t ∈ T t\in T tT,都有
    ( X ( t 1 + t ) , ⋯   , X ( t k + t ) ) = d ( X ( t 1 ) , ⋯   , X ( t n ) ) (X(t_1+t),\cdots,X(t_k+t))\stackrel d= (X(t_1),\cdots,X(t_n)) (X(t1+t),,X(tk+t))=d(X(t1),,X(tn))
    则这样的随机过程称为严平稳过程。

    如果强平稳过程的二阶矩存在且有限,那么它一定是弱平稳过程。

  • 平稳增量过程:对于随机过程 X = ( X ( t ) , t ∈ T ) \boldsymbol X=(X(t),t\in T) X=(X(t),tT)是一个随机过程,对任意 s < t s<t s<t,如果 X ( t ) − X ( s ) X(t)-X(s) X(t)X(s)的分布仅依赖于时间差 t − s t-s ts,则称 X \boldsymbol X X为平稳增量过程。

  • 独立增量过程:对于随机过程 X = ( X ( t ) , t ∈ T ) \boldsymbol X=(X(t),t\in T) X=(X(t),tT)是一个随机过程,对于任何 k ≥ 1 k\ge 1 k1 t 1 < ⋯ < t k t_1<\cdots<t_k t1<<tk,有
    X ( t 1 ) , X ( t 2 ) − X ( t 1 ) , ⋯   , X ( t k ) − X ( t k − 1 ) X(t_1),X(t_2)-X(t_1),\cdots,X(t_k)-X(t_{k-1}) X(t1),X(t2)X(t1),,X(tk)X(tk1)
    相互独立,则称 X \boldsymbol X X为独立增量过程。

  • 正态过程:令 X = ( X ( t ) , t ∈ T ) \boldsymbol X=(X(t),t\in T) X=(X(t),tT)是随机过程,如果其任意有限维分布为联合正态分布,则称 X \boldsymbol X X为正态过程,也称为高斯过程。

    对任何 t 1 , ⋯   , t k t_1,\cdots,t_k t1,,tk ( X ( t 1 ) , ⋯   , X ( t k ) ) (X(t_1),\cdots ,X(t_k)) (X(t1),,X(tk))服从联合正态分布当且仅当其任意线性组合 ∑ i = 1 k a i X ( t i ) \sum_{i=1}^k a_iX(t_i) i=1kaiX(ti)服从正态分布。

    由于联合正态分布由均值向量与协方差矩阵唯一确定,所以宽平稳正态过程一定是严平稳正态过程。

  • 白噪声:令 X = ( X ( t ) , t ∈ T ) \boldsymbol X=(X(t),t\in T) X=(X(t),tT)是零均值随机过程, μ X ( t ) = 0 \mu_X(t)=0 μX(t)=0,如果对任意 s ≠ t s\neq t s=t都有 r X ( s , t ) = 0 r_X(s,t)=0 rX(s,t)=0,则 X \boldsymbol X X为白噪声。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值