Unity Shader中的坐标系转换
最近在看《Unity Shader入门精要》,其中有颇多地方涉及到线性代数的知识点,无奈太久不用脑子里对这些东西的印象全无。
坐标系转换在Shader中十分常见,比如局部坐标(Local Coordinate)、世界坐标(World Coordinate)、切线坐标(Tangent Coordinate)这三者之间经常相互转换,因此需要用到转换矩阵,这里对转换矩阵的构建就有讲究了,学过线性代数的人都知道对矩阵求逆需要相当大的计算量,在Shader中应当尽量避免这种计算,因此各个坐标系间相互转换的矩阵,通常使用已知的一些值推导出。
例如:
坐标系A向量 α⃗ 转换到坐标系B(注意:这里的转换是针对向量而非位置)
坐标系A中的向量
α⃗ a={
xa, ya, za} , α⃗ b=Ma→bα⃗ a
一般而言两个坐标系间的关系通常由坐标轴来决定,假定坐标系A的三个坐标轴在坐标系B中表示为:
X