Unity Shader中的坐标系转换

本文介绍了Unity Shader中坐标系转换的概念,强调了局部坐标、世界坐标和切线坐标之间的转换,并探讨了如何利用线性代数中的矩阵运算来避免昂贵的矩阵求逆操作。通过举例说明了如何构建转换矩阵,特别是正交矩阵的特性在坐标转换中的应用,帮助理解Shader中矩阵组成的原理。
摘要由CSDN通过智能技术生成

Unity Shader中的坐标系转换

最近在看《Unity Shader入门精要》,其中有颇多地方涉及到线性代数的知识点,无奈太久不用脑子里对这些东西的印象全无。

坐标系转换在Shader中十分常见,比如局部坐标(Local Coordinate)、世界坐标(World Coordinate)、切线坐标(Tangent Coordinate)这三者之间经常相互转换,因此需要用到转换矩阵,这里对转换矩阵的构建就有讲究了,学过线性代数的人都知道对矩阵求逆需要相当大的计算量,在Shader中应当尽量避免这种计算,因此各个坐标系间相互转换的矩阵,通常使用已知的一些值推导出。

例如:
坐标系A向量 α⃗  转换到坐标系B(注意:这里的转换是针对向量而非位置)
坐标系A中的向量
α⃗ a={ xa, ya, za} α⃗ b=Mabα⃗ a
一般而言两个坐标系间的关系通常由坐标轴来决定,假定坐标系A的三个坐标轴在坐标系B中表示为:
X

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值