视觉惯性SLAM系列——ORB-SLAM的演进过程(三)

本文概述了ORB-SLAM系列从单目到多模态(RGB-D、VI)、从ORB特征到图优化的演进,介绍了关键点如回环检测、多地图系统和视觉惯性融合,展示了其在SLAM领域的技术创新和应用优势。
摘要由CSDN通过智能技术生成

ORB-SLAM的演进过程(三)


ORB-SLAM系列是一系列开源的视觉SLAM(Simultaneous Localization and Mapping)算法,由西班牙萨拉戈萨大学机器人感知与实时研究组(Robot Perception and Real-time Research Group)开发。这些算法以其高效、鲁棒和易于扩展的特点在SLAM领域得到了广泛应用。以下是ORB-SLAM系列的主要开源算法及其演进过程:

  1. ORB-SLAM

    • ORB-SLAM 是最早的版本,主要针对单目相机进行SLAM。它使用了ORB(Oriented FAST and Rotated BRIEF)特征点,这些特征点对尺度、旋转和光照变化具有鲁棒性。ORB-SLAM通过关键帧和局部地图的概念,实现了实时的轨迹估计和地图构建。
  2. ORB-SLAM2

    • ORB-SLAM2 是在ORB-SLAM的基础上进行的扩展,支持单目、双目和RGB-D相机。它引入了回环检测、重定位和地图复用功能,使得系统能够在更复杂的环境中运行。ORB-SLAM2的后端基于图优化(BA),允许进行具有度量尺度的精确轨迹估计。此外,它还包含了一种轻量级的定位模式,可以在建图禁用的情况下有效地重用地图。
  3. ORB-SLAM3

    • ORB-SLAM3 是ORB-SLAM系列的最新版本,它在ORB-SLAM2的基础上增加了视觉惯性(VI)SLAM支持、改进的场景识别技术、多地图(Atlas)机制以及相机模型抽象化等新特性。ORB-SLAM3能够利用单目、双目和RGB-D相机进行视觉、视觉惯性和多地图SLAM。它通过多地图系统和新的位置识别方法,提高了在视觉信息长期缺乏情况下的鲁棒性。ORB-SLAM3还支持针孔模型和鱼眼镜头模型,并且能够在小型和大型、室内和室外环境中实时、鲁棒地运行。

演进过程中的关键点包括:

  • 传感器支持的扩展:从单目到双目和RGB-D相机的支持。
  • 后端优化:从仅运动BA(Bundle Adjustment)到全局BA,提高了轨迹估计的精度。
  • 回环检测和重定位:提高了系统在复杂环境中的鲁棒性。
  • 多地图系统:允许系统在长期运行中合并和优化多个地图,提高了定位的准确性。
  • 视觉惯性融合:结合了视觉和惯性测量单元(IMU)的数据,提高了系统在动态环境下的性能。
  • 相机模型抽象化:使得SLAM系统能够适应不同的相机模型,包括针孔和鱼眼相机。

这些演进使得ORB-SLAM系列算法在SLAM领域保持了领先地位,并且为研究人员和开发者提供了强大的工具来解决实际问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值