电机控制理论学习---Clarke与Park
前言
本部分内容是对于三相电机控制理论中坐标变换的学习,旨在记录自己的学习过程以及对知识点的一些理解,每个章节参考的文章会附上链接。若有理解不到位的地方,希望各位大佬批评指正。
一、 eiφ 的简单理解
本部分内容是对以下参考文章的学习、归纳与整理:
(1)、链接: https://blog.csdn.net/weixin_44382195/article/details/102519287
(2)、链接: https://www.zhihu.com/question/420164256/answer/1578645286
1、 欧拉公式
表达形式为:
e
i
φ
=
c
o
s
φ
+
i
s
i
n
φ
e^{iφ} = cosφ+isinφ
eiφ=cosφ+isinφ
如图1所示,eiφ 表示在复平面中,起点为原点,方向为与实轴夹角为φ的单位向量,利用三角函数可以得到欧拉公式的表达形式。
2、ex 的意义
高中数学接触过ex ,从数学角度来讲,它表示以自然常数为底的指数函数,其函数图像如图2。实际上,ex 有更具象化的现实意义,首先,将e 按照泰勒级数展开可以表示为:
e
=
lim
n
→
+
∞
(
1
+
1
n
)
n
e = \lim_{n\to +∞}(1+\frac{1}{n})^n
e=n→+∞lim(1+n1)n
ex 可以表示为:
e
x
=
lim
m
→
+
∞
(
1
+
1
m
)
m
×
x
e^x = \lim_{m\to +∞}(1+\frac{1}{m})^{m×x}
ex=m→+∞lim(1+m1)m×x
e
x
=
lim
m
→
+
∞
(
1
+
x
m
×
x
)
m
×
x
e^x = \lim_{m\to +∞}(1+\frac{x}{m×x})^{m×x}
ex=m→+∞lim(1+m×xx)m×x
令n=m×x,则:
e
x
=
lim
n
→
+
∞
(
1
+
x
n
)
n
e^x = \lim_{n\to +∞}(1+\frac{x}{n})^{n}
ex=n→+∞lim(1+nx)n
下边这种ex 的表示方式是否更加熟悉一些,当你手里有1块钱,存进银行年化利率50%,半年后取出来,连同本息再存入银行,一年后你的资产将达到
(
1
+
0.5
2
)
2
(1+\frac{0.5}{2})^{2}
(1+20.5)2,如果存取次数为n次,那么一年后的资产为
(
1
+
0.5
n
)
n
(1+\frac{0.5}{n})^{n}
(1+n0.5)n
所以,e^x代表的实际意义可以理解为每一次在前一次的基础上增加
x
n
\frac{x}{n}
nx倍,重复n次后停止。
3、eix 的意义
在复平面内,以e为底的指数函数图像将会发生变化,因为在复平面内有了方向的概念,按照我们耳熟能详的复数公式:
i
2
=
−
1
i^2=-1
i2=−1任何向量乘以i2 后方向旋转了180°,所以复平面中经过i变化,原向量逆时针旋转90°,经过i2 变化,原向量逆时针旋转180°,经过-i变化,原向量顺时针旋转90°,如图3所示。
e
i
x
=
lim
n
→
+
∞
(
1
+
i
x
n
)
n
e^{ix}= \lim_{n\to +∞}(1+\frac{ix}{n})^{n}
eix=n→+∞lim(1+nix)n
再结合ex 的意义,eix 可以理解为每一次先在前一次的基础上增加
x
n
\frac{x}{n}
nx倍,然后将增加后的部分逆时针旋转90°,重复n次后停止。当x=1,n足够大时,eix 最终指向弧度为1的方向,向量幅值几乎不变化。如图4所示。
4、cosφ,sinφ的指数函数表示
如图5所示,对于复平面中的向量Fejφ
实轴分量:
F
c
o
s
φ
=
F
2
e
j
φ
+
F
2
e
−
j
φ
Fcosφ=\frac{F}{2}e^{jφ}+\frac{F}{2}e^{-jφ}
Fcosφ=2Fejφ+2Fe−jφ虚轴分量:
j
F
s
i
n
φ
=
F
2
e
j
φ
−
F
2
e
−
j
φ
jFsinφ=\frac{F}{2}e^{jφ}-\frac{F}{2}e^{-jφ}
jFsinφ=2Fejφ−2Fe−jφ
可以得到:
c
o
s
φ
=
1
2
(
e
j
φ
+
e
−
j
φ
)
cosφ=\frac{1}{2}(e^{jφ}+e^{-jφ})
cosφ=21(ejφ+e−jφ)
s
i
n
φ
=
1
2
j
(
e
j
φ
−
e
−
j
φ
)
sinφ=\frac{1}{2j}(e^{jφ}-e^{-jφ})
sinφ=2j1(ejφ−e−jφ)
二、 三相矢量的合成与分解
本部分内容是对以下参考文章的学习、归纳与整理:
链接: https://blog.csdn.net/qq_28601023/article/details/128174450?spm=1001.2014.3001.5501
链接: https://www.sztengcang.com/index.php?m=home&c=View&a=index&aid=1409
1、三相矢量合成推导
Um为各相绕组能够产生的最大磁场,而三相绕组之间按照120°相位差导通供电,因此,三相磁场相位分别为0°,120°,240°,此时,UA,UB,UC轴产生的磁场幅值可以表示为:
A相磁场幅值:Fa=Um
c
o
s
φ
=
U
m
2
(
e
j
φ
+
e
−
j
φ
)
cosφ =\frac{Um}{2}(e^{jφ}+e^{-jφ})
cosφ=2Um(ejφ+e−jφ)
B相磁场幅值:Fb=Um
c
o
s
(
φ
−
2
Π
3
)
=
U
m
2
(
e
j
(
φ
−
2
Π
3
)
+
e
−
j
(
φ
−
2
Π
3
)
)
cos(φ-\frac{2Π}{3}) =\frac{Um}{2}(e^{j(φ-\frac{2Π}{3})}+e^{-j(φ-\frac{2Π}{3})})
cos(φ−32Π)=2Um(ej(φ−32Π)+e−j(φ−32Π))
C相磁场幅值:Fc=Um
c
o
s
(
φ
+
2
Π
3
)
=
U
m
2
(
e
j
(
φ
+
2
Π
3
)
+
e
−
j
(
φ
+
2
Π
3
)
)
cos(φ+\frac{2Π}{3}) =\frac{Um}{2}(e^{j(φ+\frac{2Π}{3})}+e^{-j(φ+\frac{2Π}{3})})
cos(φ+32Π)=2Um(ej(φ+32Π)+e−j(φ+32Π))
如图6所示,合成磁场大小为F,与UA轴夹角为φ,各相磁场幅值为标量,乘以各相单位向量得到各相矢量
A相磁场矢量:
F
a
⃗
=
U
m
2
(
e
j
φ
+
e
−
j
φ
)
\vec{Fa}=\frac{Um~}{2}(e^{jφ}+e^{-jφ})
Fa=2Um (ejφ+e−jφ)
B相磁场矢量:
F
b
⃗
=
U
m
2
(
e
j
(
φ
−
2
Π
3
)
+
e
−
j
(
φ
−
2
Π
3
)
)
e
j
2
Π
3
\vec{Fb}=\frac{Um~}{2}(e^{j(φ-\frac{2Π}{3})}+e^{-j(φ-\frac{2Π}{3})})e^{j\frac{2Π}{3}}
Fb=2Um (ej(φ−32Π)+e−j(φ−32Π))ej32Π
C相磁场矢量:
F
c
⃗
=
U
m
2
(
e
j
(
φ
+
2
Π
3
)
+
e
−
j
(
φ
+
2
Π
3
)
)
e
−
j
2
Π
3
\vec{Fc}=\frac{Um~}{2}(e^{j(φ+\frac{2Π}{3})}+e^{-j(φ+\frac{2Π}{3})})e^{-j\frac{2Π}{3}}
Fc=2Um (ej(φ+32Π)+e−j(φ+32Π))e−j32Π
三相矢量合成:
F
⃗
=
F
a
⃗
+
F
b
⃗
+
F
c
⃗
\vec{F}=\vec{Fa}+\vec{Fb}+\vec{Fc}
F=Fa+Fb+Fc
F
⃗
=
U
m
2
(
e
j
φ
+
e
−
j
φ
+
(
e
j
(
φ
−
2
Π
3
)
+
e
−
j
(
φ
−
2
Π
3
)
)
e
j
2
Π
3
+
e
j
(
φ
+
2
Π
3
)
+
e
−
j
(
φ
+
2
Π
3
)
)
e
−
j
2
Π
3
)
\vec{F}=\frac{Um}{2}(e^{jφ}+e^{-jφ}+(e^{j(φ-\frac{2Π}{3})}+e^{-j(φ-\frac{2Π}{3})})e^{j\frac{2Π}{3}}+e^{j(φ+\frac{2Π}{3})}+e^{-j(φ+\frac{2Π}{3})})e^{-j\frac{2Π}{3}})
F=2Um(ejφ+e−jφ+(ej(φ−32Π)+e−j(φ−32Π))ej32Π+ej(φ+32Π)+e−j(φ+32Π))e−j32Π)
F
⃗
=
U
m
2
(
e
j
φ
+
e
−
j
φ
+
e
j
φ
+
e
−
j
(
φ
+
2
Π
3
)
+
e
j
φ
+
e
−
j
(
φ
−
2
Π
3
)
)
\vec{F}=\frac{Um}{2}(e^{jφ}+e^{-jφ}+e^{jφ}+e^{-j(φ+\frac{2Π}{3})}+e^{jφ}+e^{-j(φ-\frac{2Π}{3})})
F=2Um(ejφ+e−jφ+ejφ+e−j(φ+32Π)+ejφ+e−j(φ−32Π))
F
⃗
=
3
2
\vec{F}=\frac{3}{2}
F=23Um
e
j
φ
=
3
2
e^{jφ}=\frac{3}{2}
ejφ=23Um
e
j
w
t
e^{jwt}
ejwt
可以发现当A\B\C轴按照120°相位差输入正弦波时,产生的磁场为大小为
3
2
\frac{3}{2}
23Um,以角速度为w的逆时针旋转的矢量。如图7所示。
2、合成矢量的分解
在三相矢量合成章节计算得到合成矢量为
F
⃗
=
3
2
\vec{F}=\frac{3}{2}
F=23Um
e
j
w
t
e^{jwt}
ejwt,将该合成矢量分解到三相坐标系上,得到如下关系式:
UA轴分解矢量:
F
⃗
\vec{F}
Fua=
F
⃗
c
o
s
φ
=
3
2
\vec{F}cosφ =\frac{3}{2}
Fcosφ=23Um
e
j
w
t
c
o
s
φ
e^{jwt}cosφ
ejwtcosφ
UB轴分解矢量:
F
⃗
\vec{F}
Fub=
F
⃗
c
o
s
(
φ
−
2
Π
3
)
=
3
2
\vec{F}cos(φ-\frac{2Π}{3}) =\frac{3}{2}
Fcos(φ−32Π)=23Um
e
j
w
t
c
o
s
(
φ
−
2
Π
3
)
e^{jwt}cos(φ-\frac{2Π}{3})
ejwtcos(φ−32Π)
UC轴分解矢量:
F
⃗
\vec{F}
Fuc=
F
⃗
c
o
s
(
φ
+
2
Π
3
)
=
3
2
\vec{F}cos(φ+\frac{2Π}{3}) =\frac{3}{2}
Fcos(φ+32Π)=23Um
e
j
w
t
c
o
s
(
φ
+
2
Π
3
)
e^{jwt}cos(φ+\frac{2Π}{3})
ejwtcos(φ+32Π)
问题来了,为毛分解后的三相矢量幅值比合成前大了 3 2 \frac{3}{2} 23倍?
事实上,这块的合成和分解并不是同一个概念,合成是三相电流产生的磁场的叠加,而分解是合成磁场在三相坐标中的投影。如图8所示,合成矢量F是由红色的U相矢量、绿色的V相矢量以及黄色的W相矢量合成的,而在分解时,只是简单的把合成矢量F投影到UA轴,从图中可以看出来,UA轴的矢量并非完全由A相产生的,B、C相也贡献了自己的力量,而三相坐标系本身与A\B\C相完全重合,导致了视觉效果上A、B、C三相合成的矢量再分别分解到三相坐标系中,三相坐标系矢量幅值比三相绕组输入矢量大
3
2
\frac{3}{2}
23倍。因此,此处的矢量分解仅仅是一种数学上的变换,而不是实际意义上的三相作用效果的分解。
从数学的角度讲,继续看图8,此刻A相磁场幅值为Um
c
o
s
φ
cosφ
cosφ,合成磁场F幅值为
3
2
\frac{3}{2}
23Um ,F在UA轴的投影为F
c
o
s
φ
cosφ
cosφ,即
3
2
\frac{3}{2}
23Um
c
o
s
φ
cosφ
cosφ,也能反映出合成矢量在三相坐标系的投影比相上产生的矢量幅值大1.5倍。
三、 Clarke变换
本部分内容是对以下参考文章的学习、归纳与整理:
链接: https://blog.csdn.net/qq_28601023/article/details/128174450?spm=1001.2014.3001.5501
链接: https://blog.csdn.net/u010632165/article/details/103672042#
链接: https://zhuanlan.zhihu.com/p/104478261#
链接: https://blog.csdn.net/jaysur/article/details/100673823#
1、αβ坐标系
为了便于分析计算,建立αβ坐标系,其中α轴与UA轴重合,β轴垂直与α轴,如图9所示。图中Uα 、Uβ 为合成矢量在αβ坐标系的分量,Uu 、Uv 、Uw 分别为三相绕组输入矢量,即三相坐标系矢量。
2、Clarke变换的基本形式
Clarke变换是将三相坐标系矢量波形降维转化到αβ坐标系上,同理,逆变换就是将两相αβ静止坐标系下矢量还原为三相坐标系矢量。
根据三角函数知识,Clarke变换可以表示为:
U
α
=
U
u
−
U
v
c
o
s
(
π
3
)
−
U
w
c
o
s
(
π
3
)
{U_\alpha }={U_u}-{U_v}cos\left ( \frac{\pi }{3} \right )-{U_w}cos\left ( \frac{\pi }{3} \right )
Uα=Uu−Uvcos(3π)−Uwcos(3π)
U
β
=
U
v
s
i
n
(
π
3
)
−
U
w
s
i
n
(
π
3
)
{U_\beta }={U_v}sin\left ( \frac{\pi }{3} \right )-{U_w}sin\left ( \frac{\pi }{3} \right )
Uβ=Uvsin(3π)−Uwsin(3π)改写为矩阵形式:
[
U
α
U
β
]
=
[
1
−
1
2
−
1
2
0
3
2
−
3
2
]
[
U
u
U
v
U
w
]
\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix}=\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \end{bmatrix}\begin{bmatrix} U_u\\U_v \\U_w \end{bmatrix}
[UαUβ]=[10−2123−21−23]
UuUvUw
Clarke逆变换与Clarke变换稍有不同,根据第二章第2小节内容可知,合成矢量在UA轴的投影为A相绕组输入矢量的1.5倍,因此,Clarke逆变换过程可以表示为:
U
u
=
2
3
U
α
U_u=\frac{2}{3}U_\alpha
Uu=32Uα
U
v
=
2
3
(
U
α
c
o
s
(
2
π
3
)
+
U
β
s
i
n
(
π
3
)
)
U_v=\frac{2}{3}\left (U_\alpha cos\left ( \frac{2\pi }{3} \right ) +U_\beta sin\left ( \frac{\pi }{3} \right )\right )
Uv=32(Uαcos(32π)+Uβsin(3π))
U
w
=
2
3
(
U
α
c
o
s
(
2
π
3
)
−
U
β
s
i
n
(
π
3
)
)
U_w=\frac{2}{3}\left (U_\alpha cos\left ( \frac{2\pi }{3} \right ) -U_\beta sin\left ( \frac{\pi }{3} \right )\right )
Uw=32(Uαcos(32π)−Uβsin(3π))
改写为矩阵形式:
[
U
u
U
v
U
w
]
=
[
2
3
0
−
1
3
3
3
−
1
3
−
3
3
]
[
U
α
U
β
]
\begin{bmatrix} U_u \\U_v \\U_w \end{bmatrix}=\begin{bmatrix} \frac{2}{3} & 0\\ -\frac{1}{3} & \frac{\sqrt{3}}{3} \\ -\frac{1}{3} & -\frac{\sqrt{3}}{3}\\ \end{bmatrix}\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix}
UuUvUw
=
32−31−31033−33
[UαUβ]
3、等幅值变换
等幅值变换是保证变换前后三相坐标系矢量幅值与αβ坐标系矢量幅值相同。而由于经过clarke变换后,三相坐标系矢量幅值为αβ坐标系矢量幅值的
2
3
\frac{2}{3}
32倍,所以等幅值变换可以表示为:
[
U
α
U
β
]
=
2
3
[
1
−
1
2
−
1
2
0
3
2
−
3
2
]
[
U
u
U
v
U
w
]
\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix}=\frac{2}{3}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \end{bmatrix}\begin{bmatrix} U_u\\U_v \\U_w \end{bmatrix}
[UαUβ]=32[10−2123−21−23]
UuUvUw
clarke反变换
[
U
u
U
v
U
w
]
=
3
2
[
2
3
0
−
1
3
3
3
−
1
3
−
3
3
]
[
U
α
U
β
]
\begin{bmatrix} U_u \\U_v \\U_w \end{bmatrix}=\frac{3}{2}\begin{bmatrix} \frac{2}{3} & 0\\ -\frac{1}{3} & \frac{\sqrt{3}}{3} \\ -\frac{1}{3} & -\frac{\sqrt{3}}{3}\\ \end{bmatrix}\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix}
UuUvUw
=23
32−31−31033−33
[UαUβ]
4、等功率变换
等功率变换顾名思义,希望变换前后功率大小相等,假设等功率变换系数为k,那么有:
[
U
α
U
β
]
=
k
[
1
−
1
2
−
1
2
0
3
2
−
3
2
]
[
U
u
U
v
U
w
]
\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix}=k\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \end{bmatrix}\begin{bmatrix} U_u\\U_v \\U_w \end{bmatrix}
[UαUβ]=k[10−2123−21−23]
UuUvUw
[
U
u
U
v
U
w
]
=
1
k
[
2
3
0
−
1
3
3
3
−
1
3
−
3
3
]
[
U
α
U
β
]
\begin{bmatrix} U_u \\U_v \\U_w \end{bmatrix}=\frac{1}{k}\begin{bmatrix} \frac{2}{3} & 0\\ -\frac{1}{3} & \frac{\sqrt{3}}{3} \\ -\frac{1}{3} & -\frac{\sqrt{3}}{3}\\ \end{bmatrix}\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix}
UuUvUw
=k1
32−31−31033−33
[UαUβ]
[ I u I v I w ] [ U u U v U w ] = 1 k [ I α I β ] [ 2 3 − 1 3 − 1 3 0 3 3 − 3 3 ] 1 k [ 2 3 0 − 1 3 3 3 − 1 3 − 3 3 ] [ U α U β ] \begin{bmatrix} I_u &I_v &I_w \end{bmatrix}\begin{bmatrix} U_u \\U_v \\U_w \end{bmatrix}=\frac{1}{k}\begin{bmatrix} I_\alpha &I_\beta \end{bmatrix}\begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3}\\ 0 & \frac{\sqrt{3}}{3} & - \frac{\sqrt{3}}{3}\\ \end{bmatrix}\frac{1}{k}\begin{bmatrix} \frac{2}{3} & 0\\ -\frac{1}{3} & \frac{\sqrt{3}}{3} \\ -\frac{1}{3} & -\frac{\sqrt{3}}{3}\\ \end{bmatrix}\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix} [IuIvIw] UuUvUw =k1[IαIβ][320−3133−31−33]k1 32−31−31033−33 [UαUβ]
[
I
u
I
v
I
w
]
[
U
u
U
v
U
w
]
=
1
k
2
[
I
α
I
β
]
[
2
3
0
0
2
3
]
[
U
α
U
β
]
=
2
3
k
2
[
I
α
I
β
]
[
U
α
U
β
]
\begin{bmatrix} I_u &I_v &I_w \end{bmatrix}\begin{bmatrix} U_u \\U_v \\U_w \end{bmatrix}=\frac{1}{k^2}\begin{bmatrix} I_\alpha &I_\beta \end{bmatrix}\begin{bmatrix} \frac{2}{3} &0\\ 0&\frac{2}{3}\\ \end{bmatrix}\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix}=\frac{2}{3k^2}\begin{bmatrix} I_\alpha &I_\beta \end{bmatrix}\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix}
[IuIvIw]
UuUvUw
=k21[IαIβ][320032][UαUβ]=3k22[IαIβ][UαUβ]
因此,当k=
2
3
\frac{\sqrt{2}}{\sqrt{3}}
32时,为恒功率变换
四、 Park变换
1、dq坐标系
dq坐标系建立在永磁体转子上,d轴平重合于转子,q轴垂直于转子,q轴超前d轴90°
2、Park变换过程
[ U d U q ] = [ c o s θ s i n θ − s i n θ c o s θ ] [ U α U β ] \begin{bmatrix} _{U_d} \\_{U_q} \end{bmatrix}= \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \\ \end{bmatrix}\begin{bmatrix} _{U_\alpha } \\_{U_\beta} \end{bmatrix} [UdUq]=[cosθ−sinθsinθcosθ][UαUβ]
3、反Park变换过程
[ U α U β ] = [ c o s θ − s i n θ s i n θ c o s θ ] [ U d U q ] \begin{bmatrix} _{U_\alpha} \\_{U_\beta} \end{bmatrix}= \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \\ \end{bmatrix}\begin{bmatrix} _{U_d } \\_{U_q} \end{bmatrix} [UαUβ]=[cosθsinθ−sinθcosθ][UdUq]