电机控制理论学习---Clarke与Park

前言

本部分内容是对于三相电机控制理论中坐标变换的学习,旨在记录自己的学习过程以及对知识点的一些理解,每个章节参考的文章会附上链接。若有理解不到位的地方,希望各位大佬批评指正。

一、 e 的简单理解

本部分内容是对以下参考文章的学习、归纳与整理:
(1)、链接: https://blog.csdn.net/weixin_44382195/article/details/102519287
(2)、链接: https://www.zhihu.com/question/420164256/answer/1578645286

1、 欧拉公式

表达形式为:
e i φ = c o s φ + i s i n φ e^{iφ} = cosφ+isinφ eiφ=cosφ+isinφ
如图1所示,e 表示在复平面中,起点为原点,方向为与实轴夹角为φ的单位向量,利用三角函数可以得到欧拉公式的表达形式。

Alt

图1. 欧拉公式

2、ex 的意义

高中数学接触过ex ,从数学角度来讲,它表示以自然常数为底的指数函数,其函数图像如图2。实际上,ex 有更具象化的现实意义,首先,将e 按照泰勒级数展开可以表示为:
e = lim ⁡ n → + ∞ ( 1 + 1 n ) n e = \lim_{n\to +∞}(1+\frac{1}{n})^n e=n+lim(1+n1)n
ex 可以表示为:
e x = lim ⁡ m → + ∞ ( 1 + 1 m ) m × x e^x = \lim_{m\to +∞}(1+\frac{1}{m})^{m×x} ex=m+lim(1+m1)m×x e x = lim ⁡ m → + ∞ ( 1 + x m × x ) m × x e^x = \lim_{m\to +∞}(1+\frac{x}{m×x})^{m×x} ex=m+lim(1+m×xx)m×x
令n=m×x,则:
e x = lim ⁡ n → + ∞ ( 1 + x n ) n e^x = \lim_{n\to +∞}(1+\frac{x}{n})^{n} ex=n+lim(1+nx)n
下边这种ex 的表示方式是否更加熟悉一些,当你手里有1块钱,存进银行年化利率50%,半年后取出来,连同本息再存入银行,一年后你的资产将达到 ( 1 + 0.5 2 ) 2 (1+\frac{0.5}{2})^{2} (1+20.5)2,如果存取次数为n次,那么一年后的资产为 ( 1 + 0.5 n ) n (1+\frac{0.5}{n})^{n} (1+n0.5)n
所以,e^x代表的实际意义可以理解为每一次在前一次的基础上增加 x n \frac{x}{n} nx倍,重复n次后停止。
图片来源于网络

图2. 自然常数的指数函数图像

3、eix 的意义

在复平面内,以e为底的指数函数图像将会发生变化,因为在复平面内有了方向的概念,按照我们耳熟能详的复数公式:
i 2 = − 1 i^2=-1 i2=1任何向量乘以i2 后方向旋转了180°,所以复平面中经过i变化,原向量逆时针旋转90°,经过i2 变化,原向量逆时针旋转180°,经过-i变化,原向量顺时针旋转90°,如图3所示。
在这里插入图片描述

图3. 复平面中向量的逆时针旋转

e i x = lim ⁡ n → + ∞ ( 1 + i x n ) n e^{ix}= \lim_{n\to +∞}(1+\frac{ix}{n})^{n} eix=n+lim(1+nix)n
再结合ex 的意义,eix 可以理解为每一次先在前一次的基础上增加 x n \frac{x}{n} nx倍,然后将增加后的部分逆时针旋转90°,重复n次后停止。当x=1,n足够大时,eix 最终指向弧度为1的方向,向量幅值几乎不变化。如图4所示。
图片来源于网络

图4. 不同n取值时的e^i

4、cosφ,sinφ的指数函数表示

如图5所示,对于复平面中的向量Fe
实轴分量: F c o s φ = F 2 e j φ + F 2 e − j φ Fcosφ=\frac{F}{2}e^{jφ}+\frac{F}{2}e^{-jφ} Fcosφ=2Fejφ+2Fejφ虚轴分量: j F s i n φ = F 2 e j φ − F 2 e − j φ jFsinφ=\frac{F}{2}e^{jφ}-\frac{F}{2}e^{-jφ} jFsinφ=2Fejφ2Fejφ
可以得到: c o s φ = 1 2 ( e j φ + e − j φ ) cosφ=\frac{1}{2}(e^{jφ}+e^{-jφ}) cosφ=21(ejφ+ejφ) s i n φ = 1 2 j ( e j φ − e − j φ ) sinφ=\frac{1}{2j}(e^{jφ}-e^{-jφ}) sinφ=2j1(ejφejφ)
在这里插入图片描述

图5. cosφ,sinφ的指数函数表示

二、 三相矢量的合成与分解

本部分内容是对以下参考文章的学习、归纳与整理:
链接: https://blog.csdn.net/qq_28601023/article/details/128174450?spm=1001.2014.3001.5501
链接: https://www.sztengcang.com/index.php?m=home&c=View&a=index&aid=1409

1、三相矢量合成推导

Um为各相绕组能够产生的最大磁场,而三相绕组之间按照120°相位差导通供电,因此,三相磁场相位分别为0°,120°,240°,此时,UA,UB,UC轴产生的磁场幅值可以表示为:
A相磁场幅值:Fa=Um c o s φ = U m 2 ( e j φ + e − j φ ) cosφ =\frac{Um}{2}(e^{jφ}+e^{-jφ}) cosφ=2Um(ejφ+ejφ)
B相磁场幅值:Fb=Um c o s ( φ − 2 Π 3 ) = U m 2 ( e j ( φ − 2 Π 3 ) + e − j ( φ − 2 Π 3 ) ) cos(φ-\frac{2Π}{3}) =\frac{Um}{2}(e^{j(φ-\frac{2Π}{3})}+e^{-j(φ-\frac{2Π}{3})}) cos(φ3)=2Um(ej(φ3)+ej(φ3))
C相磁场幅值:Fc=Um c o s ( φ + 2 Π 3 ) = U m 2 ( e j ( φ + 2 Π 3 ) + e − j ( φ + 2 Π 3 ) ) cos(φ+\frac{2Π}{3}) =\frac{Um}{2}(e^{j(φ+\frac{2Π}{3})}+e^{-j(φ+\frac{2Π}{3})}) cos(φ+3)=2Um(ej(φ+3)+ej(φ+3))

如图6所示,合成磁场大小为F,与UA轴夹角为φ,各相磁场幅值为标量,乘以各相单位向量得到各相矢量
A相磁场矢量: F a ⃗ = U m   2 ( e j φ + e − j φ ) \vec{Fa}=\frac{Um~}{2}(e^{jφ}+e^{-jφ}) Fa =2Um (ejφ+ejφ)
B相磁场矢量: F b ⃗ = U m   2 ( e j ( φ − 2 Π 3 ) + e − j ( φ − 2 Π 3 ) ) e j 2 Π 3 \vec{Fb}=\frac{Um~}{2}(e^{j(φ-\frac{2Π}{3})}+e^{-j(φ-\frac{2Π}{3})})e^{j\frac{2Π}{3}} Fb =2Um (ej(φ3)+ej(φ3))ej3
C相磁场矢量: F c ⃗ = U m   2 ( e j ( φ + 2 Π 3 ) + e − j ( φ + 2 Π 3 ) ) e − j 2 Π 3 \vec{Fc}=\frac{Um~}{2}(e^{j(φ+\frac{2Π}{3})}+e^{-j(φ+\frac{2Π}{3})})e^{-j\frac{2Π}{3}} Fc =2Um (ej(φ+3)+ej(φ+3))ej3
在这里插入图片描述

图6. 三相矢量合成

三相矢量合成:
F ⃗ = F a ⃗ + F b ⃗ + F c ⃗ \vec{F}=\vec{Fa}+\vec{Fb}+\vec{Fc} F =Fa +Fb +Fc
F ⃗ = U m 2 ( e j φ + e − j φ + ( e j ( φ − 2 Π 3 ) + e − j ( φ − 2 Π 3 ) ) e j 2 Π 3 + e j ( φ + 2 Π 3 ) + e − j ( φ + 2 Π 3 ) ) e − j 2 Π 3 ) \vec{F}=\frac{Um}{2}(e^{jφ}+e^{-jφ}+(e^{j(φ-\frac{2Π}{3})}+e^{-j(φ-\frac{2Π}{3})})e^{j\frac{2Π}{3}}+e^{j(φ+\frac{2Π}{3})}+e^{-j(φ+\frac{2Π}{3})})e^{-j\frac{2Π}{3}}) F =2Um(ejφ+ejφ+(ej(φ3)+ej(φ3))ej3+ej(φ+3)+ej(φ+3))ej3)
F ⃗ = U m 2 ( e j φ + e − j φ + e j φ + e − j ( φ + 2 Π 3 ) + e j φ + e − j ( φ − 2 Π 3 ) ) \vec{F}=\frac{Um}{2}(e^{jφ}+e^{-jφ}+e^{jφ}+e^{-j(φ+\frac{2Π}{3})}+e^{jφ}+e^{-j(φ-\frac{2Π}{3})}) F =2Um(ejφ+ejφ+ejφ+ej(φ+3)+ejφ+ej(φ3))
F ⃗ = 3 2 \vec{F}=\frac{3}{2} F =23Um e j φ = 3 2 e^{jφ}=\frac{3}{2} ejφ=23Um e j w t e^{jwt} ejwt

可以发现当A\B\C轴按照120°相位差输入正弦波时,产生的磁场为大小为 3 2 \frac{3}{2} 23Um,以角速度为w的逆时针旋转的矢量。如图7所示。
在这里插入图片描述

图7. 三相矢量合成仿真

2、合成矢量的分解

在三相矢量合成章节计算得到合成矢量为 F ⃗ = 3 2 \vec{F}=\frac{3}{2} F =23Um e j w t e^{jwt} ejwt,将该合成矢量分解到三相坐标系上,得到如下关系式:
UA轴分解矢量: F ⃗ \vec{F} F ua= F ⃗ c o s φ = 3 2 \vec{F}cosφ =\frac{3}{2} F cosφ=23Um e j w t c o s φ e^{jwt}cosφ ejwtcosφ
UB轴分解矢量: F ⃗ \vec{F} F ub= F ⃗ c o s ( φ − 2 Π 3 ) = 3 2 \vec{F}cos(φ-\frac{2Π}{3}) =\frac{3}{2} F cos(φ3)=23Um e j w t c o s ( φ − 2 Π 3 ) e^{jwt}cos(φ-\frac{2Π}{3}) ejwtcos(φ3)
UC轴分解矢量: F ⃗ \vec{F} F uc= F ⃗ c o s ( φ + 2 Π 3 ) = 3 2 \vec{F}cos(φ+\frac{2Π}{3}) =\frac{3}{2} F cos(φ+3)=23Um e j w t c o s ( φ + 2 Π 3 ) e^{jwt}cos(φ+\frac{2Π}{3}) ejwtcos(φ+3)

问题来了,为毛分解后的三相矢量幅值比合成前大了 3 2 \frac{3}{2} 23倍?

事实上,这块的合成和分解并不是同一个概念,合成是三相电流产生的磁场的叠加,而分解是合成磁场在三相坐标中的投影。如图8所示,合成矢量F是由红色的U相矢量、绿色的V相矢量以及黄色的W相矢量合成的,而在分解时,只是简单的把合成矢量F投影到UA轴,从图中可以看出来,UA轴的矢量并非完全由A相产生的,B、C相也贡献了自己的力量,而三相坐标系本身与A\B\C相完全重合,导致了视觉效果上A、B、C三相合成的矢量再分别分解到三相坐标系中,三相坐标系矢量幅值比三相绕组输入矢量大 3 2 \frac{3}{2} 23倍。因此,此处的矢量分解仅仅是一种数学上的变换,而不是实际意义上的三相作用效果的分解。
从数学的角度讲,继续看图8,此刻A相磁场幅值为Um c o s φ cosφ cosφ,合成磁场F幅值为 3 2 \frac{3}{2} 23Um ,F在UA轴的投影为F c o s φ cosφ cosφ,即 3 2 \frac{3}{2} 23Um c o s φ cosφ cosφ,也能反映出合成矢量在三相坐标系的投影比相上产生的矢量幅值大1.5倍。
在这里插入图片描述

图8. 三相矢量合成及合成矢量向坐标系的分解

三、 Clarke变换

本部分内容是对以下参考文章的学习、归纳与整理:
链接: https://blog.csdn.net/qq_28601023/article/details/128174450?spm=1001.2014.3001.5501
链接: https://blog.csdn.net/u010632165/article/details/103672042#
链接: https://zhuanlan.zhihu.com/p/104478261#
链接: https://blog.csdn.net/jaysur/article/details/100673823#

1、αβ坐标系

为了便于分析计算,建立αβ坐标系,其中α轴与UA轴重合,β轴垂直与α轴,如图9所示。图中Uα 、Uβ 为合成矢量在αβ坐标系的分量,Uu 、Uv 、Uw 分别为三相绕组输入矢量,即三相坐标系矢量。
在这里插入图片描述

图9. αβ坐标系

2、Clarke变换的基本形式

Clarke变换是将三相坐标系矢量波形降维转化到αβ坐标系上,同理,逆变换就是将两相αβ静止坐标系下矢量还原为三相坐标系矢量。

根据三角函数知识,Clarke变换可以表示为:
U α = U u − U v c o s ( π 3 ) − U w c o s ( π 3 ) {U_\alpha }={U_u}-{U_v}cos\left ( \frac{\pi }{3} \right )-{U_w}cos\left ( \frac{\pi }{3} \right ) Uα=UuUvcos(3π)Uwcos(3π) U β = U v s i n ( π 3 ) − U w s i n ( π 3 ) {U_\beta }={U_v}sin\left ( \frac{\pi }{3} \right )-{U_w}sin\left ( \frac{\pi }{3} \right ) Uβ=Uvsin(3π)Uwsin(3π)改写为矩阵形式:
[ U α U β ] = [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ U u U v U w ] \begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix}=\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \end{bmatrix}\begin{bmatrix} U_u\\U_v \\U_w \end{bmatrix} [UαUβ]=[102123 2123 ] UuUvUw
Clarke逆变换与Clarke变换稍有不同,根据第二章第2小节内容可知,合成矢量在UA轴的投影为A相绕组输入矢量的1.5倍,因此,Clarke逆变换过程可以表示为:
U u = 2 3 U α U_u=\frac{2}{3}U_\alpha Uu=32Uα U v = 2 3 ( U α c o s ( 2 π 3 ) + U β s i n ( π 3 ) ) U_v=\frac{2}{3}\left (U_\alpha cos\left ( \frac{2\pi }{3} \right ) +U_\beta sin\left ( \frac{\pi }{3} \right )\right ) Uv=32(Uαcos(32π)+Uβsin(3π)) U w = 2 3 ( U α c o s ( 2 π 3 ) − U β s i n ( π 3 ) ) U_w=\frac{2}{3}\left (U_\alpha cos\left ( \frac{2\pi }{3} \right ) -U_\beta sin\left ( \frac{\pi }{3} \right )\right ) Uw=32(Uαcos(32π)Uβsin(3π))
改写为矩阵形式:
[ U u U v U w ] = [ 2 3 0 − 1 3 3 3 − 1 3 − 3 3 ] [ U α U β ] \begin{bmatrix} U_u \\U_v \\U_w \end{bmatrix}=\begin{bmatrix} \frac{2}{3} & 0\\ -\frac{1}{3} & \frac{\sqrt{3}}{3} \\ -\frac{1}{3} & -\frac{\sqrt{3}}{3}\\ \end{bmatrix}\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix} UuUvUw = 323131033 33 [UαUβ]

3、等幅值变换

等幅值变换是保证变换前后三相坐标系矢量幅值与αβ坐标系矢量幅值相同。而由于经过clarke变换后,三相坐标系矢量幅值为αβ坐标系矢量幅值的 2 3 \frac{2}{3} 32倍,所以等幅值变换可以表示为:
[ U α U β ] = 2 3 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ U u U v U w ] \begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix}=\frac{2}{3}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \end{bmatrix}\begin{bmatrix} U_u\\U_v \\U_w \end{bmatrix} [UαUβ]=32[102123 2123 ] UuUvUw

clarke反变换
[ U u U v U w ] = 3 2 [ 2 3 0 − 1 3 3 3 − 1 3 − 3 3 ] [ U α U β ] \begin{bmatrix} U_u \\U_v \\U_w \end{bmatrix}=\frac{3}{2}\begin{bmatrix} \frac{2}{3} & 0\\ -\frac{1}{3} & \frac{\sqrt{3}}{3} \\ -\frac{1}{3} & -\frac{\sqrt{3}}{3}\\ \end{bmatrix}\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix} UuUvUw =23 323131033 33 [UαUβ]

4、等功率变换

等功率变换顾名思义,希望变换前后功率大小相等,假设等功率变换系数为k,那么有:
[ U α U β ] = k [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ U u U v U w ] \begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix}=k\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \end{bmatrix}\begin{bmatrix} U_u\\U_v \\U_w \end{bmatrix} [UαUβ]=k[102123 2123 ] UuUvUw [ U u U v U w ] = 1 k [ 2 3 0 − 1 3 3 3 − 1 3 − 3 3 ] [ U α U β ] \begin{bmatrix} U_u \\U_v \\U_w \end{bmatrix}=\frac{1}{k}\begin{bmatrix} \frac{2}{3} & 0\\ -\frac{1}{3} & \frac{\sqrt{3}}{3} \\ -\frac{1}{3} & -\frac{\sqrt{3}}{3}\\ \end{bmatrix}\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix} UuUvUw =k1 323131033 33 [UαUβ]

[ I u I v I w ] [ U u U v U w ] = 1 k [ I α I β ] [ 2 3 − 1 3 − 1 3 0 3 3 − 3 3 ] 1 k [ 2 3 0 − 1 3 3 3 − 1 3 − 3 3 ] [ U α U β ] \begin{bmatrix} I_u &I_v &I_w \end{bmatrix}\begin{bmatrix} U_u \\U_v \\U_w \end{bmatrix}=\frac{1}{k}\begin{bmatrix} I_\alpha &I_\beta \end{bmatrix}\begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3}\\ 0 & \frac{\sqrt{3}}{3} & - \frac{\sqrt{3}}{3}\\ \end{bmatrix}\frac{1}{k}\begin{bmatrix} \frac{2}{3} & 0\\ -\frac{1}{3} & \frac{\sqrt{3}}{3} \\ -\frac{1}{3} & -\frac{\sqrt{3}}{3}\\ \end{bmatrix}\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix} [IuIvIw] UuUvUw =k1[IαIβ][3203133 3133 ]k1 323131033 33 [UαUβ]

[ I u I v I w ] [ U u U v U w ] = 1 k 2 [ I α I β ] [ 2 3 0 0 2 3 ] [ U α U β ] = 2 3 k 2 [ I α I β ] [ U α U β ] \begin{bmatrix} I_u &I_v &I_w \end{bmatrix}\begin{bmatrix} U_u \\U_v \\U_w \end{bmatrix}=\frac{1}{k^2}\begin{bmatrix} I_\alpha &I_\beta \end{bmatrix}\begin{bmatrix} \frac{2}{3} &0\\ 0&\frac{2}{3}\\ \end{bmatrix}\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix}=\frac{2}{3k^2}\begin{bmatrix} I_\alpha &I_\beta \end{bmatrix}\begin{bmatrix} U_\alpha \\U_\beta \end{bmatrix} [IuIvIw] UuUvUw =k21[IαIβ][320032][UαUβ]=3k22[IαIβ][UαUβ]
因此,当k= 2 3 \frac{\sqrt{2}}{\sqrt{3}} 3 2 时,为恒功率变换

四、 Park变换

1、dq坐标系

dq坐标系建立在永磁体转子上,d轴平重合于转子,q轴垂直于转子,q轴超前d轴90°
在这里插入图片描述

图10. dq坐标系

2、Park变换过程

[ U d U q ] = [ c o s θ s i n θ − s i n θ c o s θ ] [ U α U β ] \begin{bmatrix} _{U_d} \\_{U_q} \end{bmatrix}= \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \\ \end{bmatrix}\begin{bmatrix} _{U_\alpha } \\_{U_\beta} \end{bmatrix} [UdUq]=[cosθsinθsinθcosθ][UαUβ]

3、反Park变换过程

[ U α U β ] = [ c o s θ − s i n θ s i n θ c o s θ ] [ U d U q ] \begin{bmatrix} _{U_\alpha} \\_{U_\beta} \end{bmatrix}= \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \\ \end{bmatrix}\begin{bmatrix} _{U_d } \\_{U_q} \end{bmatrix} [UαUβ]=[cosθsinθsinθcosθ][UdUq]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值