文章目录
前言
矢量控制中许多环节都需要坐标变换,那么为什么需要这些变换呢,为什么不直接控制三相电流呢?本文就介绍了什么是坐标变换?为什么需要坐标变换?以及如何实现坐标变换的公式推导以及仿真模型搭建。顺便欢迎大家加入学习交流群领取相关学习资料,一起交流共同进步!
一、为什么需要坐标变换?
FOC(Field Oriented Control)就是磁场定向控制也称为矢量控制,FOC矢量控制的目的是为了实现对交流电机(尤其是异步电机和永磁同步电机)的高性能控制。如图一所示,当定子与转子中的磁场合成的磁场力与转子同轴时,此时矢量的叉乘由于作用力与力臂的夹角为0(),所以力矩最小,那么当施加力与转子垂直时在相同力下力矩最大。怎么通过控制三相电流来合成垂直于转子的磁场力,这就得通过坐标变换来实现啦。在自然坐标系中,电机的电流、电压和磁链是耦合的,这使得控制策略的实现变得复杂。通过坐标变换,可以将这些变量解耦,使得控制算法更容易实现和理解。如图二所示坐标变换将电机的三相电流转换为两个正交的直流量(d轴和q轴电流,变换完可以像控制直流电机一样的控制交流电机)。d轴电流主要负责励磁,而q轴电流则负责产生转矩。通过独立控制这两个分量,可以优化电机的性能和效率。而且由于要对控制量(位置,转速,电流)进行闭环控制一般采用“万用神器”——PID控制器(有低通滤波的效果)如果对交流量进行控制时会引入相位的滞后以及幅值的衰减,这就更复杂了,所以坐标变换也是为了简化PID控制,高效的对转矩和磁场进行控制!
图一 转矩与磁场力的关系
图二 各坐标系示意图
二、什么是坐标变换
简介
坐标变换是将电机的三相电流和电压从自然坐标系转换到两个正交的静止或旋转坐标系(通常称为α-β坐标系或d-q坐标系)三个坐标系相互转换的方法称为坐标变换。 先简单介绍一下自然坐标系,自然坐标系即为永磁同步电机定子绕组实际的坐标系,如图三所示A、B、C三相绕组各差120°排列,图四为在自然坐标系下的电流随时间变化的波形,可以看到波形为相位依次相差120°的正弦波。
图三 两电平三相电压源逆变器的原理图
图四 自然坐标系下A、B、C三相电流的变化
1. Clarke变换(Clarke Transform)
Clarke变换是第一步,它将三相电流或电压从自然坐标系转换到两相静止坐标系(α-β平面)。这个变换的目的是消除电机相位之间的耦合,从而简化控制算法。图五自然坐标系经过Clark变换转换成静止坐标系(α-β平面)后α-β轴电流随时间变化的波形,可以看到波形为相位依次相差90°的正弦波。
图五 静止坐标系下轴电流的变化
2. Park变换(Park Transform)
Park变换是第二步,它将两相静止坐标系的电流或电压转换到与转子磁场同步旋转的两相旋转坐标系(d-q平面)。这个变换的目的是将电机控制与转子位置同步,从而实现FOC(磁场定向控制)也就是实现合成与转子垂直的磁场力使得力矩达到最大。图六为静止坐标系经过Park变换后的d-q轴电流随时间变化的波形,可以看到相对于转子来说,dq坐标系就是相对静止的坐标系而id和iq也终于由讨厌的A、B、C以及α、β的交流量变为了直流量更易于控制,此时的d轴由于与转子磁链重合又称为直轴;q轴与转子磁链垂直,又称为交轴。
图六 同步旋转坐标系下dq轴电流的变化
三、坐标变换公式推导
1. Clarke变换公式推导
以我们实际通过传感器采集到的三相电流ia,ia,ic为例(三相电压、磁链也是同理),三相电流是互差120°相位的正弦波电流,图四为随着转子转动三相电流变化的过程,Clark变换是为了将三相电流变换到静止坐标系,变换为如图五所示的静止坐标系下相差90°相位的iα和iβ电流(这就实现了第一次降维解耦,将复杂的三相变换为两相),具体如何变换呢?这就得看图七了,从图七中可以看出其实Clark变换就是简单的矢量分解。分解过程如下:
即 ①
②
又根据基尔霍夫电流定律(流入电流之和等于流出电流之和)有
代入①中得
③
又由③可得与自然坐标系下相比iα的幅值是ia的3/2倍,如果要实现等幅值变换就必须把3/2消掉,这也就是为什么书上的等幅值的Clark变换矩阵要乘以2/3。而等功率变换系数是由下面的公式推导得到的其中Um、Im分别为三相电压电流幅值。
三相有功功率为,变换为两相静止坐标系后的两相有功功率为
,
即可得出等功率变换系数为。以上就是Clark的公式推导以及等幅值、等功率变换的介绍,希望大家能自己手动画图推导一下有助于理解!
三相电流通过Clark变换变为iα和iβ电流
图七 三相坐标系与静止坐标系的关系
2. Park变换公式推导
Park变换的公式是由静止坐标系看待系统转变为从转子实际的转动去看待整个系统,例如将转子当前旋转到某个位置的角度称为θe也就是电角度,此时整个转子可以等效看成一对磁铁(N极与S极)如图八所示,也就是转子转到了哪个位置就跟着变换到对应θe下的d-q坐标系,随着转子转动,d-q坐标系也跟着旋转了起来,所以Park变换是将静止坐标系转换为跟随着真实转子旋转的旋转坐标系,Park变换的公式同样由矢量分解得到,通过将α-β轴投影到d-q轴,以iα、iβ电流为例根据图九可以得到,最后变换后的
图八
图九
图六 同步旋转坐标系下dq轴电流的变化
四、坐标变换仿真搭建
坐标变换simulink仿真模型手把手搭建(小白一看就会)
- 首先打开matlab中的simulink
- 打开simulink库浏览器,选择相关的模块本节课用到通用模块库以及接收模块库和输入模块库
- 拉出输入模块库中的SIne Wave模块(正弦波模块)、通用模块库中的mux模块(信号集中复用模块)以及接收模块库中的scope(示波器模块),主体为正弦波作为输入,mux作为中间信号处理、示波器用来查看变换前后的波形,先设置三个正弦波的频率和相位、模块连线以及三相波形如下
- 根据3.1Clark变换公式的推导,通过自建函数实现Clark变换,Clark函数内部实现及变换后的波形如下
- 根据3.2Park变换公式的推导,通过自建函数实现Park变换,Park函数内部实现及变换后的波形如下
三、坐标变换公式推导
本文详细推导了Clarke变换和Park变换的数学公式,为读者提供了深入理解这两种变换的理论基础。推导过程不仅展示了变换的数学原理,还揭示了它们在实际应用中的适用性和优势。
最后,本文通过Simulink仿真模型的搭建,为读者提供了一种直观的方法来理解和应用坐标变换。仿真模型的搭建步骤简单明了,即使是初学者也能快速上手,通过实践加深对坐标变换概念的理解。
通过本文的阅读,读者不仅能够理解坐标变换的重要性和基本原理,还能够学习到如何在实际问题中应用这些变换,以及如何通过仿真来验证理论的正确性。这为进一步深入研究和应用坐标变换提供了坚实的基础。
留给大家几个简单的小任务,本文未介绍坐标变换的逆变换,原理一样希望大家课后能自己推导并实现仿真模型的搭建,遇到什么问题可以留言交流或进群讨论哈,加群更能及时回复哟
-
总结
-
在FOC矢量控制中,坐标变换是一项非常重要的技术,它允许我们在不同的坐标系之间转换数据,以便于分析和处理。本文将探讨坐标变换的必要性、基本概念、以及两种常用的坐标变换:Clarke变换和Park变换。
一、坐标变换的必要性
坐标变换之所以重要,是因为它提供了一种在不同参考框架之间转换数据的方法。这在处理旋转机械、电力系统分析、以及需要考虑不同方向分量的场合中尤为关键。通过坐标变换,我们可以简化问题,提高计算效率,并更好地理解系统的动态行为。
二、坐标变换简介
坐标变换是数学上描述一个点或向量在不同坐标系中位置变化的规则。本文主要介绍了两种坐标变换:
- Clarke变换:这是一种将三相交流电转换为两个正交的直流分量的方法。它在电力电子和电机控制领域中非常有用,因为它简化了对电机的控制算法。
- Park变换:Park变换进一步将Clarke变换的结果转换为与旋转参考框架同步的坐标系中,这对于分析和控制同步电机尤其重要。
- Clarke变换公式推导:介绍了如何将三相交流量转换为两个正交的直流分量。
- Park变换公式推导:进一步展示了如何将Clarke变换的结果转换到与电机转子旋转同步的坐标系中。