DeepSeek 模型全览:探索不同类别的模型

DeepSeek 是近年来备受关注的 AI 研究团队,推出了一系列先进的深度学习模型,涵盖了大语言模型(LLM)、代码生成模型、多模态模型等多个领域。本文将大概介绍 DeepSeek 旗下的不同类别的模型,帮助你更好地理解它们的特点和应用场景。

DeepSeek官网:DeepSeek

Deepseek在Huggingface的地址:https://huggingface.co/deepseek-ai

1. DeepSeek LLM(大语言模型)

DeepSeek LLM 是 DeepSeek 推出的通用大语言模型,主要用于文本生成、文本理解、对话交互等任务。这些模型采用 Transformer 架构,并经过大规模的预训练和指令微调,以提供更自然、智能的文本处理能力。

主要特性:

  • 支持多种任务:问答、文本补全、翻译等。
  • 经过 RLHF(人类反馈强化学习)优化,提高回答质量。
  • 适用于各种 NLP 任务,如聊天机器人、智能客服、文本摘要等。

训练方式:它是在包含 2 万亿个英文和中文标记的庞大数据集上从头开始训练的。

论文地址: [2401.02954] DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

2. DeepSeek Coder(代码生成模型)

DeepSeek Coder是针对编程任务优化的代码生成和理解模型,可用于代码补全、代码解释、自动修复等。

主要特性:

  • 支持多种编程语言,如 Python、Java、C++、JavaScript 等。
  • 能够基于自然语言描述生成代码,提升开发效率。
  • 代码补全和重构能力强,可用于 IDE 插件或自动化开发工具。

训练方式:基于DeepSeek LLM 模型继续运行得到的。

论文地址[2401.14196] DeepSeek-Coder: When the Large Language Model Meets Programming -- The Rise of Code Intelligence

3. DeepSeek-VL(多模态模型)

DeepSeek-VL(Vision-Language) 是 DeepSeek 推出的多模态 AI 模型,能够处理文本、图像等不同模态的数据,实现跨模态的理解与生成。

主要特性:

  • 能够根据文本生成图像,支持 AI 绘画任务。
  • 具备图像理解能力,可以进行图片标注、OCR 识别等。
  • 适用于 AIGC(人工智能生成内容)、数字创意等领域。

模型类别:DeepSeek-VL, DeepSeek-VL2

论文地址[2403.05525] DeepSeek-VL: Towards Real-World Vision-Language Understanding

4. DeepSeek Math(数学推理模型)

DeepSeek Math 主要针对数学推理任务优化,适用于数学问题求解、公式推导、数学建模等任务。

主要特性:

  • 适用于解方程、数学证明、数值计算等任务。
  • 结合符号推理和深度学习,提高数学问题的解答能力。
  • 可用于数学教育、科学研究等领域。

论文地址: [2402.03300] DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

5. DeepSeek Chat(对话模型)

DeepSeek Chat 是专门针对对话任务优化的聊天 AI,旨在提供更自然、更符合人类沟通习惯的交互体验。

主要特性:

  • 经过 RLHF 训练,提高对话的连贯性和可控性。
  • 适用于 AI 助手、智能客服、社交聊天等应用场景。
  • 支持多轮对话记忆,提升用户体验。

6. DeepSeek MoE(专家混合模型)

DeepSeek MoE(Mixture of Experts)采用专家混合架构,它只激活特定任务所需的子模型。这种设计提高了计算效率,降低了训练成本,这就是它的独特之处。在计算效率和模型能力之间取得平衡,适用于大规模推理任务。MOE相关的博客

DeepSeek-V3 的训练总共使用了 2,788,000 H800 GPU小时,官方提到 DeepSeek 使用了 2048 块 H800 GPU 进行训练,因此:

\frac{2,788,000}{2048} \approx 1361 \text{ hour} \approx 56.7 \text{ day}

这大约是 55~57 天

主要特性:

  • 采用 MoE 机制,提高计算效率。
  • 适用于超大规模 NLP 任务。
  • 结合多个子模型,根据任务动态分配计算资源。

论文地址:[2401.06066] DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models

不同版本, DeepSeek-V2, DeepSeek-V2-Lite, DeepSeek-V3 ....

7. DeepSeek-R1

基准模型:DeepSeek-R1-Zero 和 DeepSeek-R1 都是在DeepSeek-V3-Base模型的基础上训练出来的。

DeepSeek-R1-Zero

DeepSeek-R1-Zero 是一个通过大规模强化学习(RL)训练的模型,在训练过程中未使用监督微调(SFT)作为初步步骤,展现出了卓越的推理能力。通过强化学习,DeepSeek-R1-Zero 自然涌现出许多强大且有趣的推理行为,例如在 AIME 2024 数学竞赛中,其 pass@1 分数从 15.6% 提升至 71.0%,接近 OpenAI 的同类模型水平。训练过程中,模型展现了自我进化能力,如反思和重新评估解题方法。然而,DeepSeek-R1-Zero 也面临一些挑战,例如无尽重复(endless repetition)、可读性差(poor readability)以及语言混杂(language mixing)等问题。

为了解决这些问题并进一步提升推理能力,我们引入了 DeepSeek-R1,该模型在强化学习之前加入了冷启动数据(cold-start data)。DeepSeek-R1 在数学、编程和推理任务上的表现可与 OpenAI-o1 相媲美。

DeepSeek-R1

DeepSeek-R1 是 DeepSeek 开发的开源 AI 模型,在多个基准测试中表现出色,甚至超越了一些行业领先的模型。值得注意的是,DeepSeek-R1 的开发成本仅为 600 万美元,远低于其他大型 AI 模型的开发费用

8. DeepSeek-R1-Distill 模型

知识蒸馏(Distillation):小型模型也能强大

已被DeepSeek证明了,大型模型的推理模式可以被蒸馏到小型模型中,从而使其推理能力优于直接在小型模型上通过强化学习(RL)获得的推理模式。

利用 DeepSeek-R1 生成的推理数据,对多个广泛应用于研究领域的稠密模型进行了微调。评测结果表明,这些蒸馏后的小型稠密模型在基准测试中表现出色。DeepSeek向社区开源了基于 Qwen2.5 和 Llama3 系列的 1.5B、7B、8B、14B、32B 和 70B 规模的模型检查点,以促进研究与发展。

DeepSeek-R1-Distill 模型是在开源模型的基础上进行微调的,使用了 DeepSeek-R1 生成的样本。他们对其配置和分词器进行了轻微调整。请使用他们的设定来运行这些模型。

关于知识蒸馏的详细知识查阅我这篇博客

总结

DeepSeek 在 AI 领域的研究覆盖多个重要方向,包括 NLP、代码生成、多模态 AI、数学推理等。无论是开发者、研究人员还是 AI 爱好者,都可以从这些模型中找到适合自己需求的工具。未来,DeepSeek 可能会推出更多创新模型,让我们拭目以待!

个人感觉DeepSeek的成功有以下几点。

1. 代码,开源和可访问性

2. R1-zero 强大的推理模型, 验证了不需要有监督微调(SFT)方法 + PPO模强化学习(RL)训练的方式,只用GRPO的强化学习训练方式也是可以的。

3. 知识蒸馏法,验证了大型模型的推理模式可以被蒸馏到小型模型中,从而使其推理能力优于直接在小型模型上通过强化学习(RL)获得的推理模式。

4. 训练与推理,华为 AI 芯片集成(Ascend 910C)。DeepSeek R1 在 华为 Ascend 910C AI 芯片 上运行推理任务。推理的时候不需要Nvidia。大大降低了费用。 训练期间用2000张NVIDIA H800 GPU (低性能相比于H100)  参考资料

5. 模型增强,对2020年中出现的GShard中的传统的MOE(Mixture of Experts) 有创新的改良, 它只激活特定任务所需的子模型。这种设计提高了计算效率,降低了训练成本,这就是它的独特之处。

6. DeepSeek-V3 的训练总共使用了 2,788,000 H800 GPU小时,官方提到 DeepSeek 使用了 2048 块 H800 GPU 进行训练. 这大约是 55~57 天.

相关论文

GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding

DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models

其它

DeepSeek-R1DeepSeek-V3比较

尽管它们都属于大型语言模型,但在设计目标、训练方法和应用场景上存在显著差异。

1. DeepSeek-R1

  • 设计目标:专注于推理任务,特别是在数学、代码生成和复杂逻辑推理领域。

  • 训练方法:采用多阶段循环训练,包括基础训练、强化学习(RL)和微调的交替进行,以增强模型的深度思考能力。

  • 应用场景:适用于需要深度推理的任务,如数学建模、代码生成和复杂逻辑推理等。

2. DeepSeek-V3

  • 设计目标:追求高效的自然语言处理,强调模型的可扩展性和计算效率。

  • 训练方法:基于混合专家(MoE)架构,结合广泛的训练数据,提供增强的性能能力。

  • 应用场景:适用于大规模自然语言处理任务,特别是在多语言应用和需要高效计算的场景中表现出色。

主要区别

  • 架构差异:DeepSeek-R1 强调通过强化学习提升推理能力,而 DeepSeek-V3 则采用 MoE 架构,注重模型的可扩展性和效率。

  • 训练成本:DeepSeek-V3 的训练成本约为 DeepSeek-R1 的六分之一,体现了其在计算资源利用上的优势。

  • 应用领域:DeepSeek-R1 更适合需要深度推理的专业领域,而 DeepSeek-V3 则适用于广泛的自然语言处理任务。

总的来说,DeepSeek-R1 和 DeepSeek-V3 各有优势,选择哪种模型取决于具体的应用需求和场景

### DeepSeek模型概述 DeepSeek是一系列基于大规模预训练的语言模型,旨在提供高效、精准的自然语言处理能力。该系列根据不同需求分为Lite、Pro以及Max三个版本,各自具备不同的特点和技术优势[^1]。 #### 技术架构详览 DeepSeek的技术架构采用了先进的Transformer结构作为基础框架,通过自注意力机制实现高效的并行计算与长距离依赖捕捉。对于不同规模的数据集和任务要求,分别设计了适合小型设备部署的小型化网络(如Lite版),到能够应对复杂推理挑战的大规模多层神经元连接体系(像Max版)。这种分层次的设计使得各个版本可以在保持高性能的同时满足多样化的应用场景需求[^2]。 #### 各版本特点对比 - **DeepSeek-Lite** - 参数量约为1亿个权重单位。 - 主要特点是低延迟响应时间和较高的数据传输效率,非常适合于资源受限环境下的即时交互服务。 - **DeepSeek-Pro** - 拥有大约130亿个可调参数。 - 平衡了速度与准确性之间的关系,在多种类型的NLP任务上表现出色,适用于需要稳定可靠性能的企业级解决方案。 - **DeepSeek-Max** - 超过700亿级别的超大型参数配置。 - 不仅可以执行文字理解工作,还扩展到了图像识别等领域;特别擅长解决涉及大量背景知识或者逻辑推演的任务类型。 #### 应用场景举例 根据上述各版本的特点,DeepSeek被广泛应用于多个领域: - 实时对话系统:利用其快速反应能力和良好用户体验来构建聊天机器人或其他形式的人机交流平台; - 移动端应用程序开发:针对智能手机和平板电脑优化后的轻量化版本允许开发者轻松集成AI功能而不占用过多硬件资源; - 企业客户服务自动化:借助强大的语义解析引擎帮助公司更有效地管理和回复客户咨询; - 数据分析工具包增强:为企业内部BI团队提供更多维度的信息挖掘手段; - 高频交易策略研究:凭借卓越的风险评估算法辅助金融机构制定投资计划; - 学术界前沿探索:支持科学家们开展关于人工智能理论及其实际影响的研究项目。 ```python # Python代码示例展示如何加载并使用DeepSeek模型进行文本分类预测 from deepseek import load_model, predict_text_category model = load_model('path/to/deepseek_lite') # 加载特定版本的DeepSeek模型 result = predict_text_category(model=model, text="这是一篇有关科技的文章") # 对输入文本进行类别判断 print(f"文章属于:{result}") # 输出预测结果 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

茫茫人海一粒沙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值