计算机视觉基本概念大起底!

什么是计算机视觉

计算机视觉(Computer Vision)

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像或其他形式的信息。
计算机视觉

计算机视觉与其相关领域

和计算机视觉相关的领域从顶向下包括但不限于机器视觉,图像处理,模式识别,信号处理,再往下就是例如代数与几何,高等数学,极限等基础的数学知识了。

机器视觉

机器视觉是计算机视觉用于执行某些(生产线)动作的特例。在化工行业中,机器视觉系统可以检查生产线上的容器(是否干净、空置、无损)或检查成品是否恰当封装,从而帮助产品制造,输入为图像,输出可以是位置坐标,厚度,坏点位置,质量不合格区块等多元化的输出形式,计算机视觉是工业4.0的重要组成部分,提升机器参与流水线,减少工人成本投入。

在这里插入图片描述

关系:计算机视觉更偏重于计算机理解图像的内容或生成新的图像,更偏重于“计算机科学”领域。而机器视觉更强调精准化和实际生产相结合,更偏向“计算机技术”领域。计算机视觉主要指面向神经网络,深度学习的应用。机器视觉则会结合部分神经网络,以及传统的图像处理算法更多。

图像处理

图像处理是一门独立的学科,图像处理研究图像去噪、图像增强等内容,输入为图像,输出也是图像。需要注意的是,数字图像处理常常从人类视觉成像的原理方面来作为出发点,利用人眼成像的一些特性,例如视觉暂留,例如对高频信息不敏感,例如人眼最多能分辨24位的颜色。

数字图像的经典应用领域(传统图像处理)包括:

  • 几何变换(geometric transformations):包括放大、缩小、旋转等。
  • 颜色处理(color):颜色空间的转化、亮度以及对比度的调节、颜色修正等。
  • 图像融合(image composite):多个图像的加、减、组合、拼接。
  • 降噪(image denoising):研究各种针对二维图像的去噪滤波器或者信号处理技术。
  • 边缘检测:进行边缘或者其他局部特征提取。
  • 分割:依据不同标准,把二维图像分割成不同区域。
  • 图像编辑:和计算机图形学有一定交叉。
  • 图像配准:比较或集成不同条件下获取的图像。
  • 图像增强(image enhancement):图像的恢复,动态范围扩展等
  • 图像数字水印:研究图像域的数据隐藏、加密、或认证。
  • 图像压缩:研究图像压缩。

在这里插入图片描述

关系:计算机视觉可以利用图像处理技术进行图像预处理,但图像处理本身构不成计算机视觉的核心内容。但现在也有很多用深度学习来解决传统图像问题的方法。

模式识别

模式识别技术根据从图像抽取的统计特性或结构信息,把图像分成特定的类别。例如,文字识别或指纹识别。
在这里插入图片描述

关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KingsMan666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值