多机器人协作调度问题

清华:

王凌 教授——过程控制工程研究所

赵明国——双足机器人动力行走新方法—虚拟斜坡法的研究

 

### MATLAB中多机器人任务调度算法实现 #### 基于动态窗口方法(DWA)的任务分配 对于多无人机系统而言,采用DWA算法可以有效应对复杂的环境约束和任务需求。通过调整参数来适应不同的应用场景,此方法不仅支持单一起点终点设定,还允许配置多个起始位置及目标地点[^1]。 ```matlab % DWA Algorithm Implementation Sketch (Multi-UAV Task Allocation) function path = dwa_planner(starts, goals, obstacles, robot_radius) % Define parameters such as velocity limits and time step. for each UAV do current_position = starts{UAV}; while not at goal do calculate_dynamic_window(); evaluate_trajectories_within_window(); select_best_trajectory_based_on_cost_function(); move_robot_to_next_point_in_selected_trajectory(); update_current_position(); end store_final_path_for_UAV(path); end end ``` #### 利用粒子群优化(PSO)进行任务指派 针对静态环境下的一组固定任务点,利用PSO算法可以在较短时间内找到近似最优解。每个粒子代表一种可能的任务分配方案;群体经过迭代更新后趋向全局最佳状态[^3]。 ```matlab % PSO-based Multi-Robot Task Assignment Example Code Snippet function best_solution = pso_task_assignment(num_robots, num_tasks, task_positions) initialize_population_of_particles_randomly(); set_personal_and_global_best_solutions(); repeat until convergence_criterion_met() foreach particle in population do compute_fitness_value_using_distance_metric(particle.position); if fitness_improved then update_particle's_personal_best(); check_if_new_global_optimum_found(); endif; adjust_velocity_according_to_social_and_cognitive_components(); apply_movement_to_update_position(); endforeach; endrepeat; assign_tasks_based_on_best_known_configuration(best_solution); end ``` #### 改进型A*算法应用于路径规划 当考虑障碍物规避以及多智能体间的协作时,改进后的A*搜索策略能显著提升计算效率并确保路径的安全性和连续性。该过程涉及启发式评估函数的设计以指导搜索方向[^2]。 ```matlab % Enhanced A-Star Path Planning Function Outline function planned_paths = a_star_multi_agent(initial_states, target_points, map_data) open_list = PriorityQueue(); closed_set = {}; insert_all_agents_initial_nodes_into_openlist(open_list, initial_states); while !open_list.isEmpty() && all_goals_not_reached yet do extract_node_with_lowest_f_score(current_node); add_it_to_closedset(closed_set); generate_successors_from_current_location(successor_nodes); foreach successor in successors do skip_if_already_explored_or_invalid(map_data, closed_set, successor); estimate_g_and_h_costs_between_start_goal(g,h); choose_predecessor_among_neighbors(preceding_node); record_parent_child_relationship(parent_map); push_updated_node_back_to_queue(open_list, new_entry); endforeach; endwhile; reconstruct_individual_routes(planned_paths); end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kissgoodbye2012

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值