前言
现在一般是离线建图在线定位
因为建图消耗的资源比较大.
slam分为前端和后端
前端的主要功能有feature extraction和data association
后端是优化器,常用的优化器有g2o ceres gTSam
ORB是g2o,本质上是一个最小二乘的问题
slam的输出是pose+map
pose是6-DoF的量
现在slam可以分为2种
1.Feature-Based SLAM
PTAM(ORB-SLAM前身),ORB-SLAM,出来的是稀疏地图
2.Direct SLAM
DSO为代表的,最小化的是光度误差,出来的是稠密的地图
现在有半直接法
SVO
ORB-SLAM
BA bundle Adjustment的概念
把3d点投影到2d图像中最小化误差就是BA
角点检测
FAST + ORB
提取ORB之前是有高斯金字塔的操作,保证了缩放不变性(和SIFT相关)