Eigen::Map的常见用法

///c数组转Eigen::MatrixXd
double vec[6] = {1, 2, 3, 4, 5, 6};
std::cout << Eigen::Map<Eigen::VectorXd>(&vec[0], sizeof (vec) / sizeof(double)) << "\n";
double arr[3][3] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
std::cout << Eigen::Map<Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>(&arr[0][0], 3, 3) << "\n";
///std::vector<double>转Eigen::MatrixXd
std::vector<int> vec2{1, 2, 3, 4, 5, 6};
std::cout << Eigen::Map<Eigen::VectorXi>(vec2.data(), 6) << "\n";
Eigen::Matrix3d mat2 = Eigen::Map<Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>(&arr[0][0], 3, 3);
std::cout << mat2 << "\n";
///Eigen::MatrixXd转std::vector<double>
Eigen::Isometry3d vRes = Eigen::Isometry3d::Identity();
Eigen::Matrix<double, 4, 4, Eigen::RowMajor> res = vRes.matrix();
auto res = std::vector<double>(res.data(), res.data() + res.size());

Eigen::Matrix<float, 4, 4, Eigen::RowMajor> A;
A << 0.814723686393179,   0.632359246225410,   0.957506835434298,   0.957166948242946,
     0.905791937075619,   0.097540404999410,   0.964888535199277,   0.485375648722841,
     0.126986816293506,   0.278498218867048,   0.157613081677548,   0.800280468888800,
     0.913375856139019,   0.546881519204984,   0.970592781760616,   0.141886338627215;
Eigen::Matrix<float, 4, 4, Eigen::RowMajor> B;
B << 0.421761282626275,   0.655740699156587,   0.678735154857773,   0.655477890177557,
     0.915735525189067,   0.035711678574190,   0.757740130578333,   0.171186687811562,
     0.792207329559554,   0.849129305868777,   0.743132468124916,   0.706046088019609,
     0.959492426392903,   0.933993247757551,   0.392227019534168,   0.031832846377421;
Eigen::Matrix<float, 4, 4, Eigen::RowMajor> C;
C = A * B;
std::cout << "\n" << C << std::endl;
std::cout << "\n";
float A1[4][4];
float B1[4][4];
float C1[4][4];
Eigen::Map<Eigen::Matrix<float, 4, 4, Eigen::RowMajor>>(&A1[0][0], 4, 4) = A;
Eigen::Map<Eigen::Matrix<float, 4, 4, Eigen::RowMajor>>(&B1[0][0], 4, 4) = B;
for (auto & i : B1)
{
    for (float j : i)
    {
        std::cout << j << " ";
    }
    std::cout << "\n";
}
auto A2 = Eigen::Map<Eigen::Matrix<float, 4, 4, Eigen::RowMajor>>(&A1[0][0], 4, 4);
auto B2 = Eigen::Map<Eigen::Matrix<float, 4, 4, Eigen::RowMajor>>(&B1[0][0], 4, 4);
std::cout << "\n" << A2 << std::endl;
std::cout << "\n" << B2 << std::endl;
float V[4] = {1,2,3,4};
auto V1 = Eigen::Map<Eigen::Vector4f>(&V[0], 4, 1);
std::cout << V1.transpose() << std::endl;
float V2[4];
Eigen::Map<Eigen::Vector4f>(&V2[0], 4, 1) = V1;
for (auto & i : V2)
{
    std::cout << i << " ";
}
std::cout << "\n";
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值