泛函分析笔记8:开映射定理与闭图像定理

接下来四大定理就剩下了两个:开映射定理与闭图像定理。剩下的内容相比于前面两个定理要少很多,也更简单,我们一口气讲完吧!

1. 开映射定理

( X 1 , d 1 ) , ( X 2 , d 2 ) (X_1,d_1),(X_2,d_2) (X1,d1),(X2,d2),称 T : X 1 → X 2 T:X_1\to X_2 T:X1X2开映射,若 ∀ G ⊂ X \forall G\subset X GX 为开集,都有 T ( G ) T(G) T(G) X 2 X_2 X2 中为开集。

NOTE:我们讲到连续映射的时候证明了一个定理,即 T T T连续映射    ⟺    ∀ G ⊂ X 2 \iff \forall G\subset X_2 GX2 为开集,那么 T − 1 ( G ) = { x ∈ X 1 , T x ∈ G } T^{-1}(G)=\{x\in X_1, Tx\in G\} T1(G)={xX1,TxG} X 1 X_1 X1 中的开集。注意这与开映射不同,开映射是正向的,连续映射是反向的。

在给出开映射定理之前我们需要先准备几条引理。

引理:设 X X X 为赋范空间, λ ∈ K , λ ≠ 0 \lambda\in\mathbb{K},\lambda\ne0 λK,λ=0

  • x 0 ∈ X , r > 0 x_0\in X,r>0 x0X,r>0,则 λ B ( x 0 , r ) = B ( λ x 0 , ∣ λ ∣ r ) \lambda B(x_0,r) = B(\lambda x_0,|\lambda|r) λB(x0,r)=B(λx0,λr)
  • M ⊂ X M\subset X MX,则 λ M ‾ = λ M ‾ \overline{\lambda M}=\lambda \overline{M} λM=λM
  • M ⊂ X M\subset X MX,则 ( λ M ) ∘ = λ M ∘ (\lambda M)^\circ=\lambda M^\circ (λM)=λM

证明:只证第3条,若 x ∈ ( λ M ) ∘ x\in (\lambda M)^\circ x(λM),那么存在 r > 0 , B ( x , r ) ∈ λ M r>0,B(x,r)\in \lambda M r>0B(x,r)λM,也即 1 λ B ( x , r ) ∈ M \frac{1}{\lambda} B(x,r)\in M λ1B(x,r)M,根据第1条结论,也即 B ( x / λ , r / ∣ λ ∣ ) ∈ M B(x/\lambda,r/|\lambda|)\in M B(x/λ,r/λ)M,因此 x / λ ∈ M ∘ x/\lambda\in M^\circ x/λM,所以有 ( λ M ) ∘ ⊂ λ M ∘ (\lambda M)^\circ\subset\lambda M^\circ (λM)λM。反过来若 x ∈ λ M ∘ x\in\lambda M^\circ xλM,即 x / λ ∈ M ∘ x/\lambda\in M^\circ x/λM,类的的可以得到 λ M ∘ ⊂ ( λ M ) ∘ . \lambda M^\circ\subset(\lambda M)^\circ. λM(λM). 证毕。

引理 X , Y X,Y X,Y 为 Banach 空间, T ∈ B ( X , Y ) T\in B(X,Y) TB(X,Y) 为满射,则 T ( B X ( 0 , 1 ) ) T(B_X(0,1)) T(BX(0,1)) 包含一个以 0 0 0 为中心的开球,即存在 δ > 0 \delta>0 δ>0 B Y ( 0 , δ ) ⊂ T ( B X ( 0 , 1 ) ) . B_Y(0,\delta)\subset T(B_X(0,1)). BY(0,δ)T(BX(0,1)).

证明:这个引理看起来简单,证明还挺复杂的。我们记 B n = B X ( 0 , 1 / 2 n ) B_n=B_X(0,1/2^n) Bn=BX(0,1/2n)

首先证明 T ( B 1 ) ‾ \overline{T(B_1)} T(B1) 包含某个开球。考虑到 ⋃ n = 1 ∞ n T ( B 1 ) = Y \bigcup_{n=1}^\infty nT(B_1)=Y n=1nT(B1)=Y,由于 Y Y Y 为 Banach 空间,也可以表示为 ⋃ n = 1 ∞ n T ( B 1 ) ‾ = Y \bigcup_{n=1}^\infty n\overline{T(B_1)}=Y n=1nT(B1)=Y,根据 Baire 范畴定理,一定存在 n 0 ≥ 1 n_0\ge1 n01 使得 n 0 T ( B 1 ) ‾ n_0\overline{T(B_1)} n0T(B1) 有内点,即存在 y ∈ Y , δ > 0 y\in Y,\delta>0 yY,δ>0 使得 B ( y , δ ) ⊂ n 0 T ( B 1 ) ‾ B(y,\delta)\subset n_0\overline{T(B_1)} B(y,δ)n0T(B1),记 B ( y 0 , δ 0 ) = B ( y / n 0 , δ / n 0 ) ⊂ T ( B 1 ) ‾ B(y_0,\delta_0)=B(y/n_0,\delta/n_0)\subset \overline{T(B_1)} B(y0,δ0)=B(y/n0,δ/n0)T(B1)

接下来证明 B ( 0 , δ 0 ) ⊂ T ( B 0 ) ‾ B(0,\delta_0)\subset \overline{T(B_0)} B(0,δ0)T(B0)。对任意 y ∈ B ( 0 , δ 0 ) y\in B(0,\delta_0) yB(0,δ0),有 y 0 + y ∈ B ( y 0 , δ 0 ) y_0+y\in B(y_0,\delta_0) y0+yB(y0,δ0),所以存在 u n , v n ∈ B 1 u_n,v_n\in B_1 un,vnB1 分别有 T u n → y 0 , T v n → y 0 + y Tu_n\to y_0,Tv_n\to y_0+y Tuny0,Tvny0+y,此时 v n − u n ∈ B 0 v_n-u_n\in B_0 vnunB0,并且 T ( v n − u n ) → y T(v_n-u_n)\to y T(vnun)y,因此 y ∈ T ( B 0 ) ‾ y\in \overline{T(B_0)} yT(B0)

最后证明 B ( 0 , δ 0 / 2 ) ⊂ T ( B 0 ) B(0,\delta_0/2)\subset T(B_0) B(0,δ0/2)T(B0)。已有 B ( 0 , δ 0 / 2 n ) ⊂ T ( B n ) ‾ B(0,\delta_0/2^n)\subset \overline{T(B_n)} B(0,δ0/2n)T(Bn),任取 y ∈ B ( 0 , δ 0 / 2 ) y\in B(0,\delta_0/2) yB(0,δ0/2),由于 B ( 0 , δ 0 / 2 ) ⊂ T ( B 1 ) ‾ B(0,\delta_0/2)\subset \overline{T(B_1)} B(0,δ0/2)T(B1),因此存在 x 1 ∈ B 1 x_1\in B_1 x1B1 使得 ∥ y − T x 1 ∥ < δ 0 / 2 2 \Vert y-Tx_1\Vert < \delta_0/2^2 yTx1<δ0/22。因此 y − T x 1 ∈ B ( 0 , δ 0 / 2 2 ) y-Tx_1\in B(0,\delta_0/2^2) yTx1B(0,δ0/22),又由于 B ( 0 , δ 0 / 2 2 ) ⊂ T ( B 2 ) ‾ B(0,\delta_0/2^2)\subset \overline{T(B_2)} B(0,δ0/22)T(B2),因此存在 x 2 ∈ B 2 x_2\in B_2 x2B2 使得 ∥ y − T x 1 − T x 2 ∥ < δ 0 / 2 3 \Vert y-Tx_1-Tx_2\Vert < \delta_0/2^3 yTx1Tx2<δ0/23。依此类推,对任意的 n ≥ 1 n\ge1 n1,可以找到 x n ∈ B n x_n\in B_n xnBn,使得
∥ y − T x 1 − T x 2 − ⋯ − T x n ∥ < δ 0 2 n + 1 \Vert y-Tx_1-Tx_2-\cdots-Tx_n\Vert < \frac{\delta_0}{2^{n+1}} yTx1Tx2Txn<2n+1δ0
若令 s n = x 1 + ⋯ + x n s_n=x_1+\cdots+x_n sn=x1++xn,则有 s n s_n sn 为柯西列,假设 s n → s ∈ X s_n\to s\in X snsX,则可以验证 y = T s y=Ts y=Ts。因为 ∥ s ∥ ≤ ∑ n = 1 ∞ ∥ x n ∥ < 1 \Vert s\Vert\le \sum_{n=1}^\infty \Vert x_n\Vert<1 sn=1xn<1,因此 s ∈ B 0 s\in B_0 sB0,所以 y ∈ T ( B 0 ) y\in T(B_0) yT(B0),故 B ( 0 , δ 0 / 2 ) ⊂ T ( B 0 ) B(0,\delta_0/2)\subset T(B_0) B(0,δ0/2)T(B0)。证毕。

开映射定理 X , Y X,Y X,Y 为 Banach 空间, T ∈ B ( X , Y ) T\in B(X,Y) TB(X,Y) 为满射,则 T T T 一定是开映射。

证明:由前面的引理很容易证明,略。

推论 X , Y X,Y X,Y 为 Banach 空间, T ∈ B ( X , Y ) T\in B(X,Y) TB(X,Y) 为满射,特别地,若 T T T 为一一映射,我们有 T − 1 ∈ B ( Y , X ) T^{-1}\in B(Y,X) T1B(Y,X)(即逆映射也是有界的)。

证明:由于 T T T 为开映射且为一一映射,因此 T − 1 T^{-1} T1 为连续的,因此 T − 1 ∈ B ( Y , X ) T^{-1}\in B(Y,X) T1B(Y,X)

推论 ( X , ∥ ⋅ ∥ 1 ) , ( X , ∥ ⋅ ∥ 2 ) (X,\Vert\cdot\Vert_1),(X,\Vert \cdot\Vert_2) (X,1),(X,2) 均为 Bananch 空间,若存在常数 α > 0 \alpha>0 α>0 使得 ∥ x ∥ 1 ≤ α ∥ x ∥ 2 , ∀ x ∈ X \Vert x\Vert_1\le \alpha\Vert x\Vert_2,\forall x\in X x1αx2,xX,则存在 β > 0 \beta>0 β>0 使得 ∥ x ∥ 2 ≤ β ∥ x ∥ 1 , ∀ x ∈ X \Vert x\Vert_2\le \beta\Vert x\Vert_1,\forall x\in X x2βx1,xX,即 ∥ ⋅ ∥ 1 \Vert\cdot\Vert_1 1 ∥ ⋅ ∥ 2 \Vert\cdot\Vert_2 2 为等价范数。

证明:考虑 T : ( X , ∥ ⋅ ∥ 2 ) → ( X , ∥ ⋅ ∥ 1 ) T:(X,\Vert\cdot\Vert_2)\to(X,\Vert \cdot\Vert_1) T:(X,2)(X,1),有 T : x ↦ x T:x\mapsto x T:xx。根据条件可以知道 T T T 为有界线性算子,并且 T T T 为一一映射。因此 T − 1 T^{-1} T1 也是有界线性算子, ∥ x ∥ 2 = ∥ T − 1 x ∥ 2 ≤ ∥ T − 1 ∥ ∥ x ∥ 1 , ∀ x ∈ X \Vert x\Vert_2=\Vert T^{-1}x\Vert_2\le \Vert T^{-1}\Vert\Vert x\Vert_1,\forall x\in X x2=T1x2T1x1,xX。证毕。

2. 闭图像定理

X , Y X,Y X,Y 为赋范空间,令 Z = X × Y = { ( x , y ) : x ∈ X , y ∈ Y } Z=X\times Y=\{(x,y): x\in X,y\in Y \} Z=X×Y={(x,y):xX,yY},定义 ∥ ( x , y ) ∥ = ∥ x ∥ X + ∥ y ∥ Y \Vert(x,y)\Vert=\Vert x\Vert_X+\Vert y\Vert_Y (x,y)=xX+yY,可以验证 ∥ ⋅ ∥ \Vert\cdot\Vert Z Z Z 上的范数。若 X , Y X,Y X,Y 为 Banach 空间,则 Z Z Z 也为 Banach 空间。

X , Y X,Y X,Y 为赋范空间, D ( A ) D(A) D(A) X X X 中的线性子空间, A : D ( A ) → Y A:D(A)\to Y A:D(A)Y 为线性算子,称 A A A闭算子,若 G A = { ( x , A x ) ∈ X × Y : x ∈ D ( A ) } G_A = \{(x,Ax)\in X\times Y:x\in D(A) \} GA={(x,Ax)X×Y:xD(A)} 为闭集。

命题:有界线性算子 ⇒ \Rightarrow 闭算子。

证明:有界线性算子 A A A,任意 ( x , A x ) ∈ G A (x,Ax)\in G_A (x,Ax)GA,存在 x n → x x_n\to x xnx,假设 ( x n , A x n ) → ( x , y ) (x_n,Ax_n)\to (x,y) (xn,Axn)(x,y),由于 A A A 连续,因此 A x n → A x Ax_n\to Ax AxnAx,因此 y = A x y=Ax y=Ax,即 ( x , y ) ∈ G (x,y)\in G (x,y)G,因此 G A G_A GA 为闭集。证毕。

例子 1(闭算子 ⇏ \nRightarrow 有界线性算子):考虑求导算子, X = Y = C [ 0 , 1 ] , ∥ x ∥ ∞ = max ⁡ 0 ≤ t ≤ 1 ∣ x ( t ) ∣ X=Y=C[0,1], \Vert x\Vert_\infty=\max_{0\le t\le1}|x(t)| X=Y=C[0,1],x=max0t1x(t) D ( A ) = C 1 [ 0 , 1 ] D(A)=C^1[0,1] D(A)=C1[0,1] A : x ↦ x ′ A:x\mapsto x' A:xx 为线性算子,考虑 x n ( t ) = t n , ∥ x ∥ ∞ = 1 x_n(t)=t^n, \Vert x\Vert_\infty=1 xn(t)=tn,x=1,有 ∥ A x n ∥ = n \Vert Ax_n\Vert=n Axn=n,因此 A A A 无界,但是 A A A 为闭算子。

证明:假设 ( x n , x n ′ ) → ( x , y ) (x_n,x_n')\to (x,y) (xn,xn)(x,y),即 x n ⇉ x , x n ′ ⇉ y x_n\rightrightarrows x,x_n'\rightrightarrows y xnx,xny,现证明 y = x ′ y=x' y=x。由于 x n ′ ⇉ y x_n' \rightrightarrows y xny 一致收敛,积分与极限可以换序,对于 t ∈ [ 0 , 1 ] t\in[0,1] t[0,1]
∫ 0 t y ( s ) d s = ∫ 0 t lim ⁡ n → ∞ x n ′ ( s ) d s = lim ⁡ n → ∞ ∫ 0 t x n ′ ( s ) d s = lim ⁡ n → ∞ x n ( t ) − x n ( 0 ) = x ( t ) − x ( 0 ) \begin{aligned} \int_0^t y(s)ds &= \int_0^t \lim_{n\to\infty} x_n'(s)ds=\lim_{n\to\infty}\int_0^t x_n'(s)ds \\ &=\lim_{n\to\infty} x_n(t)-x_n(0) = x(t)-x(0) \end{aligned} 0ty(s)ds=0tnlimxn(s)ds=nlim0txn(s)ds=nlimxn(t)xn(0)=x(t)x(0)
由于 y ∈ C [ 0 , 1 ] y\in C[0,1] yC[0,1],因此 ∫ 0 t y ( s ) d s \int_0^t y(s)ds 0ty(s)ds 为连续可导函数,因此 x ∈ C 1 [ 0 , 1 ] = D ( A ) x\in C^1[0,1]=D(A) xC1[0,1]=D(A),并且有 x ′ = y x'=y x=y,这说明 ( x , y ) = ( x , x ′ ) ∈ G A (x,y)=(x,x')\in G_A (x,y)=(x,x)GA,从而 A A A 为闭算子。

NOTE:闭算子的定义域 D ( A ) D(A) D(A) 不一定是闭集,比如上面的求导算子。

例子 2(有界、不闭算子): X X X 为赋范空间, X 0 ⊊ X X_0\subsetneq X X0X 为线性子空间, X 0 X_0 X0 不闭。算子 A : X 0 → X ( x ↦ x ) A:X_0\to X(x\mapsto x) A:X0X(xx) 为线性有界算子。但是对于 y ∈ X ˉ \ X 0 y\in \bar{X}\backslash X_0 yXˉ\X0,存在 y n ∈ X 0 y_n\in X_0 ynX0 使得 ( y n , A y n ) → ( y , y ) ∉ G A (y_n,Ay_n)\to (y,y)\notin G_A (yn,Ayn)(y,y)/GA,因此 A A A 不是闭算子。

闭图像定理 X , Y X,Y X,YBanach 空间 D ( A ) D(A) D(A) X X X 的线性子空间, A : D ( A ) → Y A:D(A)\to Y A:D(A)Y闭算子。若 D ( A ) D(A) D(A) X X X闭线性子空间,则 A A A 有界

证明:证明算子有界性可以想到一致有界性原理,但是这里并没有说 D ( A ) D(A) D(A) 可分,也没有说 X X X 自反,因此一致有界性原理行不通。那么又可以联想到前面开映射定理,若有界算子 T T T 为开映射,同时又是一一映射,那么 T − 1 T^{-1} T1 也是有界算子。因此我们构造 P : G A → D ( A ) ( ( x , A x ) ↦ x ) P:G_A\to D(A)((x,Ax)\mapsto x) P:GAD(A)((x,Ax)x),其中 G A G_A GA 为 Banach 空间,并且 P P P 为有界线性算子,为满射、一一映射,因此 P − 1 : D ( A ) → G A ( x ↦ ( x , A x ) ) P^{-1}:D(A)\to G_A(x\mapsto (x,Ax)) P1:D(A)GA(x(x,Ax)) 也是有界算子,进而 A A A 也有界。

推论 X , Y X,Y X,YBanach 空间 D ( A ) = X D(A)=X D(A)=X,若 A : X → Y A:X\to Y A:XY闭算子,则 A ∈ B ( X , Y ) . A\in B(X,Y). AB(X,Y).

NOTE:如果想直接证明 A ∈ B ( X , Y ) A\in B(X,Y) AB(X,Y) 需要什么条件? ∀ x n ∈ X \forall x_n\in X xnX, 设 x n → x x_n\to x xnx,则 1) A x n Ax_n Axn 收敛;2)收敛极限为 A x Ax Ax。但如果我们有 A A A 为闭算子的条件,那么不需要证明 A x n Ax_n Axn 收敛,可以直接假设 A x n Ax_n Axn 收敛到某 y y y,只需要证明 y = A x y=Ax y=Ax 即可。

这是因为我们已经假设了 X , Y X,Y X,Y 均为 Banach 空间,因此 X × Y X\times Y X×Y 也一定是 Banach 空间,所以一定有 ( x n , A x n ) (x_n,Ax_n) (xn,Axn) 收敛到某 ( x , y ) (x,y) (x,y),因此 A x n Ax_n Axn 也一定收敛。

例子 3 H H H 为 Hilbert 空间, A : H → H , B : H → H A:H\to H, B:H\to H A:HH,B:HH 均为线性算子,并且满足 ∀ x , y ∈ H \forall x,y\in H x,yH ⟨ A x , y ⟩ = ⟨ x , B y ⟩ \langle Ax,y\rangle=\langle x,By\rangle Ax,y=x,By,则 A , B A,B A,B 均有界。

证明: ⟨ A x n , y ⟩ = ⟨ x n , B y ⟩ → ⟨ x , B y ⟩ = ⟨ A x , y ⟩ \langle Ax_n,y\rangle=\langle x_n,By\rangle\to\langle x,By\rangle=\langle Ax,y\rangle Axn,y=xn,Byx,By=Ax,y,由于 y y y 任取,因此 A x n → A x Ax_n\to Ax AxnAx,所以 A A A 为闭算子,因此 A A A 有界。证毕。

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
泛函分析笔记 0:绪论
泛函分析笔记 1:度量空间
泛函分析笔记 2:赋范空间
泛函分析笔记 3:内积空间
泛函分析笔记 4:Hahn-Banach定理
泛函分析笔记 5:Hahn-Banach定理的应用
泛函分析笔记 6:一致有界性原理
泛函分析笔记 7:弱收敛与弱星收敛
泛函分析笔记 8:开映射定理与闭图像定理

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值