RO-MAP 论文阅读

最近在研究物体slam,会注重讲解一下这方面的工作,主要侧重于文章的创新点,对于论文具体内容不会过多讲解

创新点:第一个结合物体和nerf的slam系统

项目地址:项目链接

输入rgb和instance分割结果(id代表了是哪一个物体),同时估计相机位姿和物体状态
使用marching cubes algorithm 建立mesh(可能是因为要从隐式表达转变为地图中的显式表达),并转到世界坐标系中(因为是对每一个物体单独建模)
对象关联:(1)连续帧使用instance bbox的iou (2)不连续的使用特征点(绑定在instance中的),去解决孤立的物体和重复的物体

使用轻量级的手工方法实现物体建立,而不是学习的方法
使用EIF去除不属于物体的特征点

认为物体只在yaw角上有变化(认为物体是严格放在桌子上的)

物体建立都是在外部进行的(使用现有的物体slam,对物体单独优化)

关于nerf的部分

遵循常见的nerf的方式,不同点在于只在物体的范围内建立loss(通过instane得到物体的范围),下列只列举新加入的条件
nerf使用了a multi-resolution hash encoding(==是什么?==)
采用了并行化的训练策略
只有一个物体变化角度超过一定的阈值,才会启动对这个物体优化
每次nerf训练,都需要先将像素转移到物体坐标系(nerf是只能建立在当前坐标系下,因为ro-map是给每一个物体分配了一个nerf,所以要转到物体坐标系下)

背景颜色:

不优化遮挡的物体,同时实现过滤掉背景

下篇文章将具体说明该项目的安装和调试过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lhy_6668

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值