RO-MAP 论文阅读

最近在研究物体slam,会注重讲解一下这方面的工作,主要侧重于文章的创新点,对于论文具体内容不会过多讲解

创新点:第一个结合物体和nerf的slam系统

项目地址:项目链接

输入rgb和instance分割结果(id代表了是哪一个物体),同时估计相机位姿和物体状态
使用marching cubes algorithm 建立mesh(可能是因为要从隐式表达转变为地图中的显式表达),并转到世界坐标系中(因为是对每一个物体单独建模)
对象关联:(1)连续帧使用instance bbox的iou (2)不连续的使用特征点(绑定在instance中的),去解决孤立的物体和重复的物体

使用轻量级的手工方法实现物体建立,而不是学习的方法
使用EIF去除不属于物体的特征点

认为物体只在yaw角上有变化(认为物体是严格放在桌子上的)

物体建立都是在外部进行的(使用现有的物体slam,对物体单独优化)

关于nerf的部分

遵循常见的nerf的方式,不同点在于只在物体的范围内建立loss(通过instane得到物体的范围),下列只列举新加入的条件
nerf使用了a multi-resolution hash encoding(==是什么?==)
采用了并行化的训练策略
只有一个物体变化角度超过一定的阈值,才会启动对这个物体优化
每次nerf训练,都需要先将像素转移到物体坐标系(nerf是只能建立在当前坐标系下,因为ro-map是给每一个物体分配了一个nerf,所以要转到物体坐标系下)

背景颜色:

不优化遮挡的物体,同时实现过滤掉背景

下篇文章将具体说明该项目的安装和调试过程

在探索计算机视觉领域的物体检测任务时,COCO2017数据集提供了一个宝贵的学习和实验平台。为了帮助你充分利用这个数据集,以下是从数据准备到模型评估的详细步骤: 参考资源链接:[免费获取COCO2017大规模视觉理解数据集](https://wenku.csdn.net/doc/3ro5fsh4i5?spm=1055.2569.3001.10343) 首先,你需要获取COCO2017数据集。可以通过官方网站或者一些公开分享的链接下载。一旦数据集下载完成后,你需要编写代码来加载数据。通常,会使用Python中的库,例如NumPy和OpenCV来处理图像,同时使用COCO API来方便地获取标注信息。 在加载数据后,接下来是预处理阶段。这包括将图像调整到模型输入需要的大小,标准化像素值,以及数据增强等步骤。数据增强可以通过旋转、缩放、裁剪等手段来增加模型的泛化能力。 当数据预处理完成,便可以定义你的物体检测模型。在深度学习框架如TensorFlow或PyTorch中,有许多预训练的模型可供选择,例如YOLO、SSD或Faster R-CNN等。根据你的需求和资源,选择一个合适的模型,并加载预训练的权重。 接下来是模型训练阶段,这一步骤中,你需要定义损失函数和优化器,并开始训练过程。训练过程中,你可能需要使用GPU来加速。同时,定期保存模型的权重是一个好的实践,以便能够从错误中恢复。 一旦模型训练完成,就到了评估模型性能的阶段。使用测试集评估模型,计算准确率、召回率、mAP(mean Average Precision)等指标。这将帮助你了解模型在新数据上的表现。 最后,模型评估完成后,你可以使用模型进行实际的物体检测任务,或者进一步优化模型结构和超参数,以提高性能。 为了深入理解和实践这一流程,我推荐你查看《免费获取COCO2017大规模视觉理解数据集》这份资料。该资料不仅提供了数据集的详细介绍,还包括了数据加载、模型训练和评估的实用示例和技巧,是学习COCO2017数据集的理想参考。 在你掌握了COCO2017数据集的使用和物体检测任务的基本流程后,如果你想进一步提升模型的性能或者探索更先进的技术,可以继续查阅相关高级教程和研究论文,以获得更深入的理解和更多的实践机会。 参考资源链接:[免费获取COCO2017大规模视觉理解数据集](https://wenku.csdn.net/doc/3ro5fsh4i5?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lhy_6668

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值