有参转录组实战10-差异基因KEGG富集分析

##########下面做KEGG########
emapper <- read.delim("out.emapper.annotations")
emapper[emapper=="-"] <- NA#change "-" to "NA"
emapper <- emapper[-(49584:49586),]#remove the final 3 rows
DE <- read.delim("DE_genes_filter.txt")

pathway2gene <- dplyr::select(emapper,Pathway=KEGG_Pathway, GID=query)%>%
  separate_rows(Pathway, sep = ',', convert = F)%>%
  filter(str_detect(Pathway, 'ko'))%>%
  mutate(Pathway= str_remove(Pathway, 'ko'))
pathway2gene <- pathway2gene%>%dplyr::mutate(Pathway=paste0("map",Pathway))#前面加"map"
library(magrittr)
get_path2name <- function(){
  keggpathid2name.df <- clusterProfiler:::kegg_list("pathway")
  keggpathid2name.df[,1] %>% gsub("path:map", "", .)
  colnames(keggpathid2name.df) <- c("path_id","path_name")
  return(keggpathid2name.df)
}
pathway2name <- get_path2name()
#查看下变量pathway2gene和pathway2name

ekp <- enricher(gene = DE$GID,
                TERM2GENE = pathway2gene,
                TERM2NAME = pathway2name,
                pvalueCutoff = 0.05,
                qvalueCutoff = 0.05)
write.table(ekp, file = "Ptri_KEGG_test",sep = '\t',quote = F)
#这里富集出来了,通路很少,可以自己调整P值和Q值的参数,或者在差异基因的筛选条件上放宽一点。Dsecription是对应https://rest.kegg.jp/list/pathway/#另外GeneRatio做成百分比

#加个尾图

#魔法少女小圆~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啊辉的科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值