你敢相信,我5分钟做了模式植物的GO和KEGG富集分析,并创建了orgDb数据库

原文教程:我5分钟做了模式植物的GO和KEGG富集分析,并创建了orgDb数据库

一边学习,一边总结,一边分享!

本期教程

GO富集

获得本教程Data and Code,请在后台回复:20240811

2022年教程总汇

https://mp.weixin.qq.com/s/Lnl258WhbK2a8pRZFuIyVg

2023年教程总汇

https://mp.weixin.qq.com/s/wCTswNP8iHMNvu5GQauHdg

写在前面

我们在前面的教程分享了模式植物构建orgDb数据库 | 以org.Slycompersicum.eg.db为例,这两天也做对应的分析,但是发现前面的代码速度太慢了,以及会出现报错的情况。

那么我们也做了对应的优化,可以大大减少花费时间,以及减少我们的报错。

现在我们的代码,可以直接读取eggnog分析获得数据,非常的方便。

此外,我们在这里依旧推荐大家使用本地的Egg-mapper进行注释,我自己使用下来,非常的快捷。虽然网页版的Egg-mapper工具,现在可以支持最多10000条的序列,但是速度依旧是比较慢的。

此外,本地使用Egg-mapper使用时,数据库的下载可能对新手小白具有挑战性,若是本推文阅读量超过5000+,我们也会视频讲解+文本,手把手教大家。


Code

本次,我们依旧使用我们的一

go富集分析kegg富集分析是生物信息学中常用的两种功能注释方法,用于解释大规模基因表达数据中的生物学意义功能。这些分析通常用于分析基因列表中富集的功能类别或代谢通路。 在go富集分析中,通常使用Gene Ontology(GO数据库来标注基因的功能、细胞组分生物过程。分析过程包括将基因列表与注释数据库中的功能类别进行比较,计算富集程度。富集程度由P值来衡量,P值越小表示富集程度越高,代表该功能类别在基因列表中出现的概率较小。 解读go富集分析结果时,需要关注具有显著富集的功能类别,这些功能类别指示了基因列表中的生物学过程功能。此外,还需要考虑功能类别的层级关系,例如,富集于更高级别的功能类别可能表示更广泛的生物学过程。结合基因列表的背景信息研究问题的特点,进一步挖掘解释功能类别的生物学意义。 对于kegg富集分析,是基于KEGG(Kyoto Encyclopedia of Genes and Genomes)数据库中的代谢通路信息进行注释富集分析富集程度也是通过计算P值来量化,P值越小表示富集程度越高,代表该代谢通路在基因列表中出现的概率较小。 解读kegg富集分析结果时,可关注具有显著富集的代谢通路,这些通路是基因列表中可能参与的生物化学反应网络。进一步分析这些富集的代谢通路可以帮助理解基因表达数据中的代谢变化生物过程的调控机制。 综上所述,gokegg富集分析结果的解读需要结合P值功能/通路的生物学意义,通过综合分析得出准确的结论。这两种方法在生物信息学研究中具有重要的应用价值,可以帮助揭示基因表达数据中的生物学过程、功能代谢调控机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杜的生信筆記

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值