【线性代数基础进阶】矩阵-补充+练习

常见的矩阵

A A A n n n阶矩阵

  • 单位阵:主对角元素为 1 1 1,其余元素为 0 0 0的矩阵称为单位阵,记作 E n E_{n} En
  • 数量阵:数 k k k与单位阵 E E E的积 k E kE kE称为数量阵
  • 对角阵:非对角元素都是 0 0 0的矩阵(即 ∀ i ≠ j 恒有 a i j = 0 \forall i\ne j恒有a_{ij}=0 i=j恒有aij=0)的对角阵,记作 Λ , Λ = d i a g [ a 1 , a 2 , ⋯   , a n ] \Lambda,\Lambda=diag[a_{1},a_{2},\cdots,a_{n}] Λ,Λ=diag[a1,a2,,an]
  • 上(下)三角阵:当 i > j ( i < j ) i>j(i<j) i>j(i<j)时,有 a i j = 0 a_{ij}=0 aij=0的矩阵称为上(下)三角阵
  • 对称阵:满足 A T = A A^{T}=A AT=A,即 a i j = a j i a_{ij}=a_{ji} aij=aji的矩阵称为对称阵
  • 反对称阵:满足 A T = − A A^{T}=-A AT=A,即 a i j = − a j i , a i i = 0 a_{ij}=-a_{ji},a_{ii}=0 aij=aji,aii=0的矩阵称为反对称阵

上述补充在## 一、概念、运算 ### 概念

运算

例1:设 α = ( 1 2 , 0 , ⋯   , 0 , 1 2 ) T \alpha=(\frac{1}{2},0,\cdots,0, \frac{1}{2})^{T} α=(21,0,,0,21)T n n n维列向量,矩阵 A = E − α α T , B = E + a α α T A=E-\alpha \alpha^{T},B=E+a \alpha \alpha^{T} A=EααT,B=E+aααT,若 B B B A A A的逆矩阵,则 a = ( ) a=() a=()

对于行向量和列向量,只要出现了 a T a a^{T}a aTa a a T aa^{T} aaT,可能结果是常数,尤其是 a T a a T a a^{T}aa^{T}a aTaaTa a a T a a T aa^{T}aa^{T} aaTaaT,一定有组合为常数

A B = ( E − α α T ) ( E + a α α T ) = E + ( a − 1 ) α α T − a α α T α ⏟ 常数 α T = E + ( a − 1 − a α T α ) α α T = E + ( a − 1 − a ( 1 2 0 ⋯ 0 1 2 ) ( 1 2 0 ⋮ 0 1 2 ) ) α α T = E + ( a − 1 − 1 2 a ) α α T \begin{aligned} AB&=(E-\alpha \alpha^{T})(E+a \alpha \alpha^{T})\\ &=E+(a-1)\alpha \alpha^{T}-a \alpha \underbrace{\alpha^{T}\alpha}_{常数} \alpha^{T}\\ &=E+(a-1-a \alpha^{T}\alpha)\alpha \alpha^{T}\\ &=E+(a-1-a \begin{pmatrix} \frac{1}{2} & 0 & \cdots & 0 & \frac{1}{2} \end{pmatrix}\begin{pmatrix} \frac{1}{2} \\ 0 \\ \vdots \\ 0 \\ \frac{1}{2} \end{pmatrix})\alpha \alpha^{T}\\ &=E+(a-1- \frac{1}{2}a)\alpha \alpha^{T} \end{aligned} AB=(EααT)(E+aααT)=E+(a1)ααTaα常数 αTααT=E+(a1aαTα)ααT=E+(a1a(210021) 210021 )ααT=E+(a121a)ααT
又因为 B B B A A A的逆矩阵
E + ( a − 1 − 1 2 a ) α α T = E ⇔ ( a − 1 − 1 2 a ) α α T = 0 ⇔ a − 1 − 1 2 a = 0 E+(a-1- \frac{1}{2}a)\alpha \alpha^{T}=E\Leftrightarrow(a-1- \frac{1}{2}a)\alpha \alpha^{T}=0\Leftrightarrow a-1- \frac{1}{2}a=0 E+(a121a)ααT=E(a121a)ααT=0a121a=0
所以 a = 2 a=2 a=2

例2:设 f ( x ) = x 100 + x 99 + ⋯ + x + 1 , A = ( 1 0 0 0 0 1 0 0 0 ) f(x)=x^{100}+x^{99}+\cdots+x+1,A=\begin{pmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{pmatrix} f(x)=x100+x99++x+1,A= 100000010 ,求 f ( A ) f(A) f(A) f ( A ) − 1 f(A)^{-1} f(A)1

显然 常数 + 矩阵 常数+矩阵 常数+矩阵的形式不存在,所以,一般的,遇到 常数 + 矩阵 常数+矩阵 常数+矩阵,考虑把常数变为常数倍的单位阵 E E E

A 2 = ( 1 0 0 0 0 1 0 0 0 ) ( 1 0 0 0 0 1 0 0 0 ) = ( 1 0 0 0 0 0 0 0 0 ) A^{2}=\begin{pmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{pmatrix}\begin{pmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{pmatrix}=\begin{pmatrix}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix} A2= 100000010 100000010 = 100000000

A 3 = A 2 A = ( 1 0 0 0 0 0 0 0 0 ) ( 1 0 0 0 0 1 0 0 0 ) = ( 1 0 0 0 0 0 0 0 0 ) = A 2 A^{3}=A^{2}A=\begin{pmatrix}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}\begin{pmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{pmatrix}=\begin{pmatrix}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}=A^{2} A3=A2A= 100000000 100000010 = 100000000 =A2
可知 A m = A 2 ( m ≥ 2 ) A^{m}=A^{2}(m\geq2) Am=A2(m2),故
f ( A ) = A 100 + ⋯ + A 2 + A + E = 99 A 2 + A + E = ( 99 0 0 0 0 0 0 0 0 ) + ( 1 0 0 0 0 1 0 0 0 ) + ( 1 0 0 0 1 0 0 0 1 ) = ( 101 0 0 0 1 1 0 0 1 ) f ( A ) − 1 = ( 101 0 0 0 1 1 0 0 1 ) − 1 利用分块矩阵求逆 = ( 1 101 0 0 0 1 − 1 0 0 1 ) \begin{aligned} f(A)&=A^{100}+\cdots+A^{2}+A+E\\ &=99A^{2}+A+E\\ &=\begin{pmatrix}99 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}+\begin{pmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{pmatrix}+\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}\\ &=\begin{pmatrix}101 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{pmatrix}\\ f(A)^{-1}&=\begin{pmatrix}101 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{pmatrix}^{-1}利用分块矩阵求逆\\ &=\begin{pmatrix} \frac{1}{101} & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{pmatrix} \end{aligned} f(A)f(A)1=A100++A2+A+E=99A2+A+E= 9900000000 + 100000010 + 100010001 = 10100010011 = 10100010011 1利用分块矩阵求逆= 101100010011

矩阵的初等行变换

  • 倍乘初等矩阵,记作 E ( i ( k ) ) E(i(k)) E(i(k))
    例如
    E ( 2 ( k ) ) = ( 1 0 0 0 k 0 0 0 1 ) E(2(k))=\begin{pmatrix}1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1\end{pmatrix} E(2(k))= 1000k0001
    E ( 2 ( k ) ) E(2(k)) E(2(k))表示由单位阵 E E E的第二行(或第二列)乘 k ( k ≠ 0 ) k(k\ne0) k(k=0)倍得到的矩阵
  • 互换初等矩阵,记作 E ( i , j ) E(i,j) E(i,j)
    例如
    E ( 1 , 2 ) = ( 0 1 0 1 0 0 0 0 1 ) E(1,2)=\begin{pmatrix}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix} E(1,2)= 010100001
    E ( 1 , 2 ) E(1,2) E(1,2)表示由单位阵 E E E的第一、二行(或一、二列)互换得到的矩阵
  • 倍加初等矩阵,记作 E ( i j ( k ) ) E(ij(k)) E(ij(k))
    例如
    E ( 13 ( k ) ) = ( 1 0 0 0 1 0 k 0 1 ) E(13(k))=\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1\end{pmatrix} E(13(k))= 10k010001
    E ( 13 ( k ) ) E(13(k)) E(13(k))表示由单位阵 E E E的第一行的 k k k倍加到第三行得到的矩阵,当看成列变换时,应是 E E E的第三列的 k k k倍加到第一列得到的矩阵

补充在## 三、初等变换、初等矩阵

分块矩阵

例3:已知 B , C B,C B,C分别是 m m m阶与 n n n阶可逆矩阵,证明 ( B O O C ) \begin{pmatrix}B & O \\ O & C\end{pmatrix} (BOOC)可逆,且 ( B O O C ) − 1 = ( B − 1 O O C − 1 ) \begin{pmatrix}B & O \\ O & C\end{pmatrix}^{-1}=\begin{pmatrix}B^{-1} & O \\ O & C^{-1}\end{pmatrix} (BOOC)1=(B1OOC1)

B , C B,C B,C均可逆,有
∣ B O O C ∣ = ∣ B ∣ ⋅ ∣ C ∣ ≠ 0 \begin{vmatrix} B&O\\O&C \end{vmatrix}=|B|\cdot|C|\ne0 BOOC =BC=0
所以 ( B O O C ) \begin{pmatrix}B & O \\ O & C\end{pmatrix} (BOOC)可逆
( B O O C ) − 1 = ( X Y Z W ) \begin{pmatrix}B & O \\ O & C\end{pmatrix}^{-1}=\begin{pmatrix}X & Y \\ Z & W\end{pmatrix} (BOOC)1=(XZYW),则
( B O O C ) ( X Y Z W ) = ( E O O E ) \begin{pmatrix}B & O \\ O & C\end{pmatrix}\begin{pmatrix}X & Y \\ Z & W\end{pmatrix}=\begin{pmatrix} E & O \\ O & E\end{pmatrix} (BOOC)(XZYW)=(EOOE)

{ B X = E ( 1 ) B Y = 0 ( 2 ) C Z = 0 ( 3 ) C W = E ( 4 ) \left\{ \begin{array} { l l } { B X = E } & { ( 1 ) } \\ { B Y = 0 } & { ( 2 ) } \\ { C Z = 0 } & { ( 3 ) } \\ { C W = E } & { ( 4 ) } \end{array}\right. BX=EBY=0CZ=0CW=E(1)(2)(3)(4)
( 1 ) (1) (1) X = B − 1 X=B^{-1} X=B1
( 2 ) (2) (2),因 B B B可逆,有 Y = B − 1 O = O Y=B^{-1}O=O Y=B1O=O
类似地 Z = O , W = C − 1 Z=O,W=C^{-1} Z=O,W=C1
所以 ( B O O C ) − 1 = ( B − 1 O O C − 1 ) \begin{pmatrix}B & O \\ O & C\end{pmatrix}^{-1}=\begin{pmatrix}B^{-1} & O \\ O & C^{-1}\end{pmatrix} (BOOC)1=(B1OOC1)

例4:设 A = ( 0 a 1 0 ⋯ 0 0 0 a 2 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ a n − 1 a n 0 0 ⋯ 0 ) A=\begin{pmatrix}0 & a_{1} & 0 & \cdots & 0 \\ 0 & 0 & a_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} \\ a_{n} & 0 & 0 & \cdots & 0\end{pmatrix} A= 000ana10000a20000an10 ,其中 a i ≠ 0 , i = 1 , 2 , ⋯   , n a_{i}\ne0,i=1,2,\cdots,n ai=0,i=1,2,,n,则 A − 1 = ( ) A^{-1}=() A1=()

A A A分块如下
A = ( 0 a 1 0 ⋯ 0 0 0 a 2 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ a n − 1 a n 0 0 ⋯ 0 ) = ( O A 1 A 2 O ) A=\left(\begin{array}{c:cccc}0 & a_{1} & 0 & \cdots & 0 \\ 0 & 0 & a_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} \\\hdashline a_{n} & 0 & 0 & \cdots & 0\end{array}\right)=\begin{pmatrix} O & A_{1} \\ A_{2} & O \end{pmatrix} A= 000ana10000a20000an10 =(OA2A1O)
由于 ( O A B O ) − 1 = ( O B − 1 A − 1 O ) \begin{pmatrix}O & A \\ B & O\end{pmatrix}^{-1}=\begin{pmatrix}O & B^{-1} \\ A^{-1} & O\end{pmatrix} (OBAO)1=(OA1B1O),有
A − 1 = ( 0 0 ⋯ 0 1 a n 1 a 1 0 ⋯ 0 0 0 1 a 2 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 a n − 1 0 ) A^{-1}=\begin{pmatrix} 0 & 0 & \cdots & 0 & \frac{1}{a_{n}} \\ \frac{1}{a_{1}} & 0 & \cdots & 0 & 0 \\ 0 & \frac{1}{a_{2}} & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & \frac{1}{a_{n-1}} & 0 \end{pmatrix} A1= 0a110000a210000an11an1000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值