深度学习基础21(Dropout)

丢弃法(Dropout)

我们为什么要使用丢弃法?

  • 一个好的模型需要对输入数据的扰动鲁棒

丢弃法:在层之间加入噪音

无偏差加入噪音
  • 对x加入噪音得到x’ 我们希望E[x’]=x,x的期望不变

  • 丢弃法对每个元素进行如下扰动

在这里插入图片描述

这样可以保证x的期望不变

使用丢弃法
  • 通常将丢弃法作用在隐藏全连接层的输出上

    UBM85O1~2ETD

正则项只在训练中使用:只影响模型参数的更新

重新审视过拟合

当面对更多的特征而样本不足时,线性模型往往会过拟合。 相反,当给出更多样本而不是特征,通常线性模型不会过拟合。

但线性模型泛化的可靠性是有代价的。 线性模型没有考虑到特征之间的交互作用。

对于每个特征,线性模型必须指定正的或负的权重,而忽略其他特征。

泛化性和灵活性之间的这种基本权衡被描述为偏差-方差权衡(bias-variance tradeoff)

线性模型有很高的偏差:它们只能表示一小类函数。 然而,这些模型的方差很低:它们在不同的随机数据样本上可以得出相似的结果。

深度神经网络位于偏差-方差谱的另一端

与线性模型不同,神经网络并不局限于单独查看每个特征,而是学习特征之间的交互。

例如,神经网络可能推断“尼日利亚”和“西联汇款”一起出现在电子邮件中表示垃圾邮件, 但单独出现则不表示垃圾邮件。

扰动的稳健性

我们期待“好”的预测模型能在未知的数据上有很好的表现: 经典泛化理论认为,为了缩小训练和测试性能之间的差距,应该以简单的模型为目标。 简单性以较小维度的形式展现, 比如在权重衰减(𝐿2正则化)时看到的那样, 参数的范数也代表了一种有用的简单性度量

简单性的另一个角度是平滑性,即函数不应该对其输入的微小变化敏感。

研究者发现,当训练一个有多层的深层网络时,注入噪声只会在输入-输出映射上增强平滑性

这个想法被称为丢弃法(dropout)。 丢弃法在前向传播过程中,计算每一内部层的同时注入噪声,这已经成为训练神经网络的常用技术。

因为我们从表面上看是在训练过程中丢弃(drop out)一些神经元。

在整个训练过程的每一次迭代中,标准丢弃法包括在计算下一层之前将当前层中的一些节点置零

需要说明的是,暂退法的原始论文提到了一个关于有性繁殖的类比: 神经网络过拟合与每一层都依赖于前一层激活值相关,称这种情况为“共适应性”。 作者认为,暂退法会破坏共适应性,就像有性生殖会破坏共适应的基因一样。

注入这种噪声以一种无偏向(unbiased)的方式。 这样在固定住其他层时,每一层的期望值等于没有噪音时的值

实践中的暂退法

通常,我们在测试时不用暂退法。 给定一个训练好的模型和一个新的样本,我们不会丢弃任何节点,因此不需要标准化。

然而也有一些例外:一些研究人员在测试时使用暂退法, 用于估计神经网络预测的“不确定性”: 如果通过许多不同的暂退法遮盖后得到的预测结果都是一致的,那么我们可以说网络发挥更稳定。

从零开始实现

要实现单层的暂退法函数, 我们从均匀分布𝑈[0,1]中抽取样本,样本数与这层神经网络的维度一致。

然后保留那些对应样本大于𝑝的节点,把剩下的丢弃。

在下面的代码中,实现 dropout_layer 函数, 该函数以dropout的概率丢弃张量输入X中的元素

如上所述重新缩放剩余部分:将剩余部分除以1.0-dropout

import torch
from torch import nn
from d2l import torch as d2l


def dropout_layer(X, dropout):
    assert 0 <= dropout <= 1
    # 在本情况中,所有元素都被丢弃
    if dropout == 1:
        return torch.zeros_like(X)
    # 在本情况中,所有元素都被保留
    if dropout == 0:
        return X
    mask = (torch.rand(X.shape) > dropout).float()#mask用于判断哪些东西等于0,哪些东西等于1
    return mask * X / (1.0 - dropout)

通过下面几个例子来测试dropout_layer函数。 丢弃概率分别为0、0.5和1。

X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
print(X)
print(dropout_layer(X, 0.))
print(dropout_layer(X, 0.5))
print(dropout_layer(X, 1.))

tensor([[ 0., 1., 2., 3., 4., 5., 6., 7.],

​ [ 8., 9., 10., 11., 12., 13., 14., 15.]])

tensor([[ 0., 1., 2., 3., 4., 5., 6., 7.],

​ [ 8., 9., 10., 11., 12., 13., 14., 15.]])

tensor([[ 0., 2., 4., 0., 0., 10., 0., 0.],

​ [16., 0., 20., 0., 0., 0., 28., 0.]])

tensor([[0., 0., 0., 0., 0., 0., 0., 0.],

​ [0., 0., 0., 0., 0., 0., 0., 0.]])

定义模型参数

使用 Fashion-MNIST数据集

定义具有两个隐藏层的多层感知机,每个隐藏层包含256个单元

num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256

定义模型

将丢弃法应用于每个隐藏层的输出(在激活函数之后), 并且可以为每一层分别设置丢弃概率:

  • 常见的技巧是在靠近输入层的地方设置较低的暂退概率

下面的模型将第一个和第二个隐藏层的暂退概率分别设置为0.2和0.5, 并且丢弃法只在训练期间有效。

dropout1, dropout2 = 0.2, 0.5

class Net(nn.Module):
    def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,
                 is_training = True):
        super(Net, self).__init__()
        self.num_inputs = num_inputs
        self.training = is_training
        self.lin1 = nn.Linear(num_inputs, num_hiddens1)
        self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)
        self.lin3 = nn.Linear(num_hiddens2, num_outputs)
        self.relu = nn.ReLU()

    def forward(self, X):
        H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))#第一个隐藏层的输出
       
        if self.training == True:#判断如果是在训练那么dropout
           
            H1 = dropout_layer(H1, dropout1)# 在第一个全连接层之后添加一个dropout层
        H2 = self.relu(self.lin2(H1))
        if self.training == True:
           
            H2 = dropout_layer(H2, dropout2)# 在第二个全连接层之后添加一个dropout层
        out = self.lin3(H2)
        return out


net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)

训练和测试

这类似于前面描述的多层感知机训练和测试。

num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-shQAeiCL-1648889610196)(C:\Users\Lenovo\Documents\Tencent Files\850604703\FileRecv\MobileFile\Image}C7OBR}6}C@PM905URP631D.png)]

下面可以看一下没有dropout时的情况

H`14@8Z8F%``HJZT{GC

然后看一下0.9的情况

8FW_RO(GLX{​{MHN2Z`ULQN

简洁实现**

对于深度学习框架的高级API,只需在每个全连接层之后添加一个Dropout层, 将丢弃概率作为唯一的参数传递给它的构造函数。

在训练时,Dropout层将根据指定的丢弃概率随机丢弃上一层的输出(相当于下一层的输入)。

在测试时,Dropout层仅传递数据。

net = nn.Sequential(nn.Flatten(),#nn.Flatten()先把输入拉平,拉成一个二维的东西
        nn.Linear(784, 256),#第一个全连接层784是维度,256是隐藏层大小
        nn.ReLU(),
       
        nn.Dropout(dropout1),# 在第一个全连接层之后添加一个dropout层
        nn.Linear(256, 256),#再来一个隐藏层
        nn.ReLU(),
       
        nn.Dropout(dropout2),# 在第二个全连接层之后添加一个dropout层
        nn.Linear(256, 10))#最后是输出层

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

对模型进行训练和测试

trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-O8C3nCrM-1648889610197)(C:\Users\Lenovo\Documents\Tencent Files\850604703\FileRecv\MobileFile\Image\3890C3WMCW_81NM(}N3U49J.png)]

小结

  • 丢弃法在前向传播过程中,计算每一内部层的同时丢弃一些神经元。
  • 丢弃法可以避免过拟合,它通常与控制权重向量的维数和大小结合使用的。
  • 丢弃法将活性值ℎ替换为具有期望值ℎ的随机变量。
  • 丢弃法仅在训练期间使用。
  • 丢弃法将一些输出项随机置零来控制模型复杂度
  • 常作用在多层感知机的隐藏层输出上
  • 丢弃概率是控制模型复杂度的超参数
  • 常见的技巧是在靠近输入层的地方设置较低的暂退概率

经验

在创建模型的时候,把隐藏层设置的大一点,然后丢弃率随之也大一点的效果

可能比

隐藏层小一点,不使用dropout效果要好一点

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NDNPOMDFLR

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值