面向工业物联网的5G机器学习研究综述

源自:信息与控制

作者:柴浩轩  金曦  许驰  夏长清

随着计算机技术不断应用于工业物联网,工业系统中的数据传输愈加需要支持高实时、高可靠、高带宽以及海量连接的特性。传统的网络已经无法满足这些需求,5G网络因其高速率、低时延、支持海量连接以及良好的移动性等优越性能已成为当前工业物联网领域的研究热点。本文对面向工业网络的5G机器学习方法进行了综述,首先分析了5G网络通信技术领域的大规模天线、终端直连、移动边缘计算以及异构超密集组网等关键技术,其次介绍了人工智能技术以及作为其重要组成部分的机器学习技术,同时总结了将机器学习技术引入5G网络以解决具体问题的方法并对之进行了总结与展望,最后提出了5G通信技术的未来研究趋势。

关键词

工业物联网  /  5G  /  人工智能  /  机器学习 

引言

物联网(Internet of Things,IoT)是一种通过有线和无线网络连接物理对象的技术[1],其技术核心是部署数十亿甚至数万亿的智能物体,这些物体能够感知周围的物理世界,传输并处理所采集的感知数据,然后再作用于物理世界。物联网将物理世界有机地组织在一起,极大地促进了自动驾驶、智慧城市、智慧医疗等新兴产业的发展。工业物联网(industrial internet of things,IIoT)作为物联网的一个子集(如图 1),其内容涵盖了所有与工业相关的物联网理论、技术与应用。“中国制造2025”和工业4.0的核心都是IIoT与制造业的有机结合,因此工业物联网相关技术的发展对推动我国从制造大国向制造强国的转变具有重大意义。目前IIoT已被应用于多种工业系统,如石油和天然气系统、电网及汽车制造系统等。

图片

图  1  物联网、信息物理系统、工业物联网以及工业4.0的关系[1]

根据IIoT内部功能进行划分,可归纳出IIoT的分层架构,如图 2所示,包括物理层、通信层和应用层三层[2]。物理层由收集和发送数据的传感器、制动器、制造设备及移动设备等组成,这些设备由应用层中的不同工业应用(智能工厂、智慧供应链等)通过通信层中不同的通信网络(WSAN、5G、M2M等)进行控制。

图片

图  2  IIOT三层架构[2]

通信层是工业物联网的核心,起到承上启下的作用。在诸如远程控制、生产调度等系统中,如果延时较高,很多技术将无法实现,例如远程控制时,低时延的数据传输是操作成功完成的关键所在。不同工业生产场景对于网络实时性及时延的需求不尽相同。如表 1所示,在一般的控制过程中,诸如物料传送、过程自动化等不同连接要素的应用中,对于时延的要求存在较大差异。例如物料传送、过程自动化等场景需要人工的参与,对于时延的要求不是十分严格,而高速控制等无需人工参与的生产场景则对实时性的要求较高。信息监测场景中,由于设备状态以及环境信息等数据并不直接作用于生产系统中,因而监测系统的时延需求一般都在100 ms之上。而对于安全生产系统,诸如煤矿开采控制过程,要求数据在10 ms内完成传输,否则过高的时延可能会导致生产事故的发生。

图片

表  1  不同工业场景对时延的需求

此外,工业数据的传输为网络提出了高可靠性的要求,因此传输网络不仅要支持毫秒级别的端到端时延,还必须保证接近100%的传输可靠性。例如现场设备与生产决策系统的连接中,保障可靠性只是该系统的最基本要求。对于现代的工业系统而言,所采用的工业物联网必须连通人、机、物生产全要素,这导致海量数据的高并发传输。例如大规模油田监管系统中,物理设备接入量已达百万级别。工业生产中还涉及有线网络与无线网络互联的问题,有线网络具有高带宽、高可靠性的优点,适合作为数据汇集传输的骨干网络,而无线网络可以摆脱线缆的束缚且组网方式更加灵活,适合作为广域、大规模的接入网。因此,为了支撑工业物联网,通信层的网络必须具备高实时、高可靠、海量连接及异构组网的特性。

5G通信技术与机器学习相结合是满足以上特性的重要技术路线之一。目前,5G在实时性、可靠性、高并发、高带宽、广覆盖等方面的技术指标优于其他无线网络,与优化效果极佳的机器学习方法相结合,可以有效提升工业系统中数据的传输性能。因此本文面向工业物联网,对5G中的机器学习方法进行综述。本文从工业物联网所需的数据传输特性出发,介绍了5G的关键技术与机器学习方法,进一步列举了各种5G技术与机器学习方法相结合解决的工业物联网传输问题,最后对相关技术的未来研究进行了展望。

1.   5G关键技术

5G与4G相比,速率提升了十倍,布网密度增加了百倍,延时缩短为1/10。这些优异的性质得益于5G采用的大量先进技术。本文选取对性能起决定性作用的5G特色技术介绍如下。

1.1   大规模天线技术

大规模多路输入多路输出(massive multi-input and multi-output,Massive MIMO)天线技术通过在基站侧安装大规模天线,实现大量天线同时收发数据,并利用空间复用技术,实现频谱效率的大规模提升。如图 3所示,MIMO通过设置多天线,可以同时发送和接收多个空间流,而无线信道容量则随着天线数量的增多而线性增大。

图片

图  3  MIMO原理图

自4G技术大面积普及以来,MIMO已经被纳入了许多移动通信的标准。然而MIMO在应用中还存在着许多缺陷。例如,由于高传播损耗以及穿透损耗等因素的影响,4G中MIMO的可实现增益不足以减轻毫米波(mmWave)的危害,因此需采用Massive MIMO。Massive MIMO可以提供更快的数据速率和更高的功率增益来补偿毫米波的衰减,其原理图如图 4所示。文[3]对应用于5G通信系统中的大规模天线进行了数据速率、频谱效率以及容量等性能的分析。仿真实验结果表明,利用大规模天线技术可以有效补偿毫米波频率引起的信号衰减。此外,大规模天线技术可以与当前网络和接入技术无缝集成,同时提高无线通信系统的容量、可靠性及频谱效率。为解决未来5G异构网络(HetNet)的许多技术问题提供了重要手段。

图片

图  4  大规模MIMO示例图

1.2    高频传输技术

随着无线通信技术的发展、数据流量的暴增及用户业务和应用的快速增长,移动通信系统的设备连接数、速率及带宽等都必须满足更高的要求。目前,低频传输资源日益短缺,因为5G网络通信技术需要更广阔的频率带宽来运行,这使得现有的无线通信频谱资源变得更加稀有。而6 GHz以上的高频段具有更加丰富的频谱资源且具有传播方向性强、安全性高、抗干扰好、频率复用性强等优势,但同时也有着传播损耗大以及波长较短等缺陷。如何解决高频段中的传输瓶颈,使其资源能够为无线通信所用,进而缓解当前频谱资源短缺的问题,已成为当下的研究热点。

1.3   终端直连技术

D2D通信(deviceto device,D2D)是指两个移动用户之间不经过基站(base station,BS)或核心网而进行的直接通信[4-5]。D2D通信最常见的用例如图 5所示,为了降低通信系统中核心网络的压力,通信系统中一旦建立D2D通信链路,数据传输与信息交换便只发生在邻近设备之间而无需网络中心设备的干预。因此,相较于传统的蜂窝网络通信中所有通信必须经过BS而言,D2D通信可以发生在蜂窝频谱(带内)或未经许可的频谱(带外)。传统的通信架构适合低数据速率移动业务,如语音通话和短信,然而在今天的蜂窝网络中,移动用户使用的是高数据速率服务(如视频共享、游戏等),在这些服务中,D2D通信技术可以大大提高网络的频谱效率。除此之外,在该技术支持下,当基站出现故障或者无线网络信号较差而无法覆盖全区域时,设备仍可以通过D2D技术进行通信,提高了无线网络的通信质量。然而5G采用D2D通信技术也将面临诸多挑战:1) 蜂窝网络与D2D的切换问题,即如何判断蜂窝网络和D2D通信的最佳运用场景并自主决策;2) D2D小区的干扰问题,如何避免干扰;3) 传统中继方案由于D2D同步信号(SSs)的碰撞而不适用以及中继选择等都是D2D需要解决的问题。

图片

图  5  D2D通信的典型用例

1.4     异构超密集组网技术

5G正朝着更多元、更全面、更智能的方向发展。如图 6所示,超密集网络(ultra-dense network,UDN)技术可以同时提升频谱效率、网络容量、网络覆盖,进而增加系统容量。此外,面向5G的创新移动宽带网络架构,由不同大小、不同类型的小区构成,即异构网络(HetNet)。HetNet通过协调部署3G/4G中的无线基础设施,可以有效提供高数据吞吐量、良好的移动支持性及优质的用户体验,异构超密集组网技术可以在扩大无线网络覆盖范围的基础上,提高系统的吞吐量和通信质量,此项技术已经成为5G网络提高数据流量的关键技术之一。

图片

图  6  UDN示意图

1.5   网络切片

5G网络的应用场景千变万化且不同场景对于指标的要求可谓天差地别,因此传统的统一格式网络已无法满足不同业务的需求。5G采用端到端的网络切片技术(network slice,NS)将网络分割成多个逻辑上相互独立的切片,以实现各个特定业务或场景下的最佳体验。网络切片实质上是一种虚拟专有网络,是在共享物理网络上提供特定网络的技术,其两个重要指标分别是虚拟网络间的共享与隔离[6]。如图 7所示,通过采用网络切片技术,5G单一网络被划分为多个网络切片,即mMTC(massive machine type of communication)切片、URLLC(ultra-reliable low-latency communications)切片及eMMB(Enhanced Mobile Broadband)切片。每个网络切片作为一个逻辑网络,可以根据具体的需求配置特定的网络功能,以提供各种异构特征的服务。这种方法将有助于解决不同用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值