源自:指挥控制与仿真
作者:孙怡峰, 廖树范, 吴疆 李福林
“人工智能技术与咨询” 发布
摘要
针对战场态势信息众多、变化趋势认知困难的问题,提出基于大模型的态势认知智能体框架和智能态势认知推演方法。从认知概念出发,结合智能体的抽象性、具身性特点,明确了智能体构建的3个关键环节:学习环境、记忆方式和产生知识机制;设计了战场态势认知智能体架构,包括记忆部件、规划部件、执行部件、评估部件以及智能体训练要点。在长期记忆部件中,围绕战场复杂状态建模特点,分析大语言模型、多模态大模型、大序列模型的运用问题。
关键词
大模型; 态势认知; 智能体; 通用人工智能
态势是现实世界中人们关注的事物状态及可能出现的变化。军事领域中,战场态势是指战场环境与兵力分布的当前状态和发展变化的趋势[1]。战场态势感知是对敌情、我情、战场环境所处状态的感知以及对作战进程变化的理解,是实施作战指挥决策的基础支撑。当前,战场态势信息来源分散、复杂高维、实时快变、多元异构,信息的碎片化、片面化、不确定性问题严重,准确把握变化的趋势对指挥员或指挥机构也越来越困难。
针对上述问题,文献[2]通过改进加权平均法及优化小波变换完成数据与图像融合处理;文献[3]将数据分析和数据展现技术运用于态势感知,然而当前战场态势的信息量已经达到海量级别,超出了人类认知极限,容易导致片面的战场态势感性认知。文献[4]基于卷积神经网络提取复杂战场环境特征;文献[5]在战场态势感知中使用注意力机制,生成围绕作战目的和作战任务的态势认知;文献[6]探讨将表示学习、深度学习、强化学习和群体智能等用于态势认知。最近,人工智能中的大模型技术发展迅速,一定程度建模了世界通用知识。基于大模型的自主智能体[7-8]表现出了较强的认知环境、适应环境的能力,给战场态势感知带来了新的启发。
本文提出利用大模型构建态势认知智能体,智能体在仿真环境下推演学习复杂态势规律,构建从战场之“态”到预测战场之“势”之间的复杂映射关系知识。态势认知智能体与AIGC(Artificial Intelligence Generated Content)一样,有望生成多种态势的发展路径,供使用人员最终决策。
1 智能态势推演认知与智能体
1.1 战场态势感知与智能推演认知
传统上,通过物理传感器、人体感官观察或远距离操控无人化情报监视侦察平台直接收集战场信息,这对应着第1级态势感知。在获取丰富信息的情况下,作战指挥人员能否有效吸收和理解这些复杂的海量信息、预测对手(目标)意图、识别对手行动样式,这对应了第2级态势感知。基于知识预测发展趋势,这是第3级态势感知,例如预测对手兵力部署、评估对手行动的威胁性和作战意图的变化。态势感知的第2级和第3级本质上属于认知范畴,也将其称为态势认知[9]。作战指挥人员的认知并非完美,经常存在“执着信念”,也就是可能存在所谓认知偏见。这在战场上将导致高估威胁或者低估威胁的情况。作战指挥人员若高估威胁,将可能为获取更多信息而不必要地减缓行军进度;作战指挥人员若低估威胁,将可能在缺乏充足信息的情况下逼近敌军,从而更易遭受攻击[10]。随着信息技术的快速发展,机器辅助作战指挥人员进行态势认知成为重要的发展方向[11]。
机器辅助人类态势认知可以分为基于假设检验的态势认知、面向体系对抗的多层次综合认知、基于推演预测的态势认知等不同层面[9]。基于推演预测的态势认知将对敌我行为进行分析,产生主要的态势分支,同时按行为规则、交战规则等超实时仿真推演结果,预判每个分支对手的