UTF8gbsn
先来描述一下问题.对于系数为属于
C
\Bbb{C}
C,而非常数的多项式
P
(
z
)
=
∑
j
=
0
n
(
a
j
z
j
)
=
a
0
+
a
1
z
+
a
2
z
2
+
⋯
+
a
n
−
1
z
n
−
1
+
a
n
z
n
P(z)=\sum_{j=0}^{n}\left(a_{j} z^{j}\right)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n-1} z^{n-1}+a_{n} z^{n}
P(z)=j=0∑n(ajzj)=a0+a1z+a2z2+⋯+an−1zn−1+anzn
那么 p ( z ) p(z) p(z)含有n个根,且属于 C \Bbb{C} C.也就是说有n个 z i z_i zi使得 p ( z i ) = 0 p(z_i)=0 p(zi)=0
note
先来明确一点,constant
polynomial的定义.当
z
k
,
k
⩾
1
z^k,k\geqslant 1
zk,k⩾1的系数都为0的时候,这个多项式就为constant
polynomial.而constant polynomial实际上就是只剩常数的多项式,比如
p ( z ) = a 0 + 0 ⋅ z + 0 ⋅ z 2 + ⋯ + 0 ⋅ z n − 1 + 0 ⋅ z n p(z)=a_{0}+0\cdot z+0\cdot z^{2}+\cdots+0\cdot z^{n-1}+0\cdot z^{n} p(z)=a0+0⋅z+0⋅z2+⋯+0⋅zn−1+0⋅zn
如果,那么
p
(
z
)
=
a
0
+
0
⋅
z
+
0
⋅
z
2
+
⋯
+
0
⋅
z
n
−
1
+
0
⋅
z
n
p(z)=a_{0}+0\cdot z+0\cdot z^{2}+\cdots+0\cdot z^{n-1}+0\cdot z^{n}
p(z)=a0+0⋅z+0⋅z2+⋯+0⋅zn−1+0⋅zn有哪些根呢?假如
p
(
z
)
=
a
0
+
0
⋅
z
+
0
⋅
z
2
+
⋯
+
0
⋅
z
n
−
1
+
0
⋅
z
n
≠
0
p(z)=a_{0}+0\cdot z+0\cdot z^{2}+\cdots+0\cdot z^{n-1}+0\cdot z^{n}\neq 0
p(z)=a0+0⋅z+0⋅z2+⋯+0⋅zn−1+0⋅zn=0,
那么
z
z
z取多少的值可以满足
p
(
z
)
=
a
0
+
0
⋅
z
+
0
⋅
z
2
+
⋯
+
0
⋅
z
n
−
1
+
0
⋅
z
n
=
0
p(z)=a_{0}+0\cdot z+0\cdot z^{2}+\cdots+0\cdot z^{n-1}+0\cdot z^{n}=0
p(z)=a0+0⋅z+0⋅z2+⋯+0⋅zn−1+0⋅zn=0呢?很明显是0.没有任何的
z
z
z可以满足这一点.但是如果
p
(
z
)
=
a
0
+
0
⋅
z
+
0
⋅
z
2
+
⋯
+
0
⋅
z
n
−
1
+
0
⋅
z
n
=
0
p(z)=a_{0}+0\cdot z+0\cdot z^{2}+\cdots+0\cdot z^{n-1}+0\cdot z^{n}=0
p(z)=a0+0⋅z+0⋅z2+⋯+0⋅zn−1+0⋅zn=0,那么什么样的
z
z
z可以满足这一点呢?很明显所有的
z
z
z都可以满足这一点儿.
归纳法
归纳法中有一点是前提条件.也就是对于非常数的多项式.一定会有一个根
∈
C
\in \Bbb{C}
∈C.这个命题是叫做
fundamental theorem of algebra.另外一个需要用到的东西是factor
theorem.有了这个命题我们就很容易证明原命题了.
-
当k=1时, p ( z ) = a 1 z + a 0 , a 1 ≠ 0 p(z)=a_1z+a_0,a_1\neq 0 p(z)=a1z+a0,a1=0 含有一个根 z = − a 0 a 1 z=-\frac{a_0}{a_1} z=−a1a0
-
假设k=n-1时, p ( z ) = a k z k + a k − 1 z k − 1 + ⋯ + a 0 p(z)=a_{k}z^k+a_{k-1}z^{k-1}+\cdots + a_0 p(z)=akzk+ak−1zk−1+⋯+a0有n-1个根.
-
有对于k=n,按照 fundamental theorem of
algebra,我们可以断言 p ( z ) p(z) p(z)含有一个根 z λ z_{\lambda} zλ,我们可以根据factor
theorem来将 p ( z ) p(z) p(z)改写为 p ( z ) = ( z − z λ ) g ( z ) p(z)=(z-z_{\lambda})g(z) p(z)=(z−zλ)g(z)
其中 g ( z ) g(z) g(z)是一个 n − 1 n-1 n−1次的多项式.我们知道 g ( z ) g(z) g(z)含有n-1个根.那么 p ( z ) p(z) p(z)就一定含有n个根.
可见原式得证.