(概率论与数理统计)ch03

  1. n维随机变量的联合分布函数
    F ( x 1 , x 2 , ⋯   , x n ) = P ( X 1 ⩽ x 1 , X 2 ⩽ x 2 , ⋯   , X n ⩽ x n ) F(x_1,x_2,\cdots, x_n)=P(X_1\leqslant x_1,X_2\leqslant x_2,\cdots,X_n\leqslant x_n) F(x1,x2,,xn)=P(X1x1,X2x2,,Xnxn)

  2. 边缘分布函数
    lim ⁡ x → ∞ F ( ∞ , ∞ , ⋯   , x k , ⋯   , ∞ ) = F x k ( x k ) \lim_{x\rightarrow \infty}F(\infty,\infty,\cdots,x_k,\cdots, \infty)=F_{x_k}(x_k) xlimF(,,,xk,,)=Fxk(xk)

  3. 二维随机变量的联合分布举例
    F ( x , y ) = { 1 − e − x − e − y + e − x − y − λ x y , x > 0 , y > 0 0 F(x, y)=\left\{\begin{array}{l}1-e^{-x}-e^{-y}+e^{-x-y-\lambda x y} ,x>0,y>0\\ 0\end{array}\right. F(x,y)={1exey+exyλxy,x>0,y>00
    边缘分布
    F X ( x ) = F ( x , ∞ ) = { 1 − e − x , x > 0 0 , F_{X}(x)=F(x, \infty)=\left\{\begin{array}{ll}1-e^{-x}, & x>0 \\ 0 & ,\end{array}\right. FX(x)=F(x,)={1ex,0x>0,
    F Y ( y ) = F ( ∞ , y ) = { 1 − e − y , y > 0 0 , x ⩽ 0 F_{Y}(y)=F(\infty, y)=\left \{ \begin{array}{ll} 1-e^{-y},y>0\\ 0 , x \leqslant 0 \end{array} \right. FY(y)=F(,y)={1ey,y>00,x0

  4. 多维连续随机变量的分布函数
    F ( x , y ) = ∫ − ∞ x ∫ − ∞ x p ( x , y ) d x d y F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{x} p(x, y) d x d y F(x,y)=xxp(x,y)dxdy
    由此可见,可以定义区域的概率大小的计算公式
    P ( X , Y ) ∈ S ) = ∬ s p ( x , y ) d x d y = ∫ a b ∫ ϕ 1 ( x ) φ 2 ( x ) p ( x , y ) d y d x P(X, Y) \in S)=\iint_{s} p(x, y) d x d y=\int_{a}^{b} \int_{\phi_{1}(x)}^{\varphi_{2}(x)} p(x, y) d y d x P(X,Y)S)=sp(x,y)dxdy=abϕ1(x)φ2(x)p(x,y)dydx
    P ( a < X < b , c < Y < d ) = ∫ a b ∫ c d p ( x , y ) d y d x P(a<X<b, c<Y<d)=\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x P(a<X<b,c<Y<d)=abcdp(x,y)dydx

    在这里插入图片描述

  5. 概率密度函数的性质
    p ( x , y ) ⩾ 0 ∫ − ∞ ∞ ∫ − ∞ ∞ p ( x , y ) d x d y = 1 } \left.\begin{array}{l}p(x, y) \geqslant 0 \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) d x d y=1\end{array}\right\} p(x,y)0p(x,y)dxdy=1}

    p ( x , y ) = ∂ 2 ∂ x ∂ y F ( x , y ) p(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y) p(x,y)=xy2F(x,y)
    F X ( x ) = P ( X ⩽ x , Y < ∞ ) = ∫ − ∞ x { ∫ − ∞ ∞ p ( x , y ) d y } d x = ∫ − ∞ x p X ( x ) d x \begin{aligned} F_{X}(x) &=P(X \leqslant x, Y<\infty) \\ &=\int_{-\infty}^{x}\left\{\int_{-\infty}^{\infty} p(x, y) d y\right\} d x \\ &=\int_{-\infty}^{x} p_{X}(x) d x \end{aligned} FX(x)=P(Xx,Y<)=x{p(x,y)dy}dx=xpX(x)dx
    p X ( x ) = ∫ − ∞ ∞ p ( x , y ) d y p_{X}(x)=\int_{-\infty}^{\infty} p(x, y) d y pX(x)=p(x,y)dy
    P Y ( y ) = ∫ − ∞ ∞ p ( x , y ) d x P_{Y}(y)=\int_{-\infty}^{\infty} p(x, y) d x PY(y)=p(x,y)dx

  6. 二维正态分布
    p ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 2 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 2 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } − ∞ < x , y < + ∞ \begin{aligned} p(x, y)=& \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{2}\right)^{2}}{\sigma_{1}^{2}}\right.\right.\\ &\left.\left.-\frac{2 \rho\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{2} \sigma_{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]\right\} \\ &-\infty<x, y<+\infty \end{aligned} p(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(xμ2)2σ2σ22ρ(xμ1)(yμ2)+σ22(yμ2)2]}<x,y<+

  7. 二维正态分布的边缘分布.
    p X ( x ) = 1 2 π σ 1 exp ⁡ { − ( x − μ 1 ) 2 2 σ 1 2 } p_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} \exp \left\{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right\} pX(x)=2π σ11exp{2σ12(xμ1)2}

  8. 从这个例子还可看出一个有趣的现象=由二维联合分布可以唯一决定其每个分!的边缘分布胆反过来不成立。即知道
    X 与 Y 的边缘分布,也不足以决定其联合分布.譬如考虑两个二维正态分布
    N ( 0 , 0 , 1 , 1 , 1 / 2 ) N(0,0,1,1,1 / 2) N(0,0,1,1,1/2) N ( 0 , 0 , 1 , 1 , 1 / 3 ) N(0,0,1,1,1 / 3) N(0,0,1,1,1/3)

    它们的任一边缘分布都是标准正态分布N(0,1).但这两个二维正态分布是不同分布,因为其参数
    P
    的数值不同。引起这个现象的原因是:二维联合分布不仅含有每夺分量的概率分布,而且还贪有两个变量X与Y之间关系的信息
    ,后者正是人们研究多维随机变量原因.以后会看到 ,这里参数 P
    的值将会反映二个变量 X 与 Y 之间关系密切的程度.

  9. 独立的随机变量
    P ( X 1 ⩽ x 1 , X 2 ⩽ x 2 , ⋯   , X n ⩽ x n ) = P ( X 1 ⩽ x 1 ) p ( X 2 ⩽ x 2 ) ⋯ P ( X n ⩽ x n ) \begin{array}{l}P\left(X_{1} \leqslant x_{1}, X_{2} \leqslant x_{2}, \cdots, X_{n} \leqslant x_{n}\right) \\ \quad=P\left(X_{1} \leqslant x_{1}\right) p\left(X_{2} \leqslant x_{2}\right) \cdots P\left(X_{n} \leqslant x_{n}\right)\end{array} P(X1x1,X2x2,,Xnxn)=P(X1x1)p(X2x2)P(Xnxn)

    p ( x 1 , x 2 , ⋯   , x n ) = p 1 ( x 1 ) , p 2 ( x 2 ) , ⋯   , p n ( x n ) p\left(x_{1}, x_{2}, \cdots, x_{n}\right)=p_{1}\left(x_{1}\right), p_{2}\left(x_{2}\right), \cdots, p_{n}\left(x_{n}\right) p(x1,x2,,xn)=p1(x1),p2(x2),,pn(xn)

  10. ρ = 0 \rho=0 ρ=0时,即独立时.因为对于正态分布来说 ρ = 0 \rho=0 ρ=0和独立是充分必要条件.而其他分布,不行.
    p ( x , y ) = 1 2 π σ 1 σ 2 exp ⁡ { − 1 2 [ ( x − μ 1 ) 2 σ 1 2 + ( y − μ 2 ) 2 σ 2 2 ] } = p X ( x ) p Y ( y ) \begin{aligned} p(x, y) &=\frac{1}{2 \pi \sigma_{1} \sigma_{2}} \exp \left\{-\frac{1}{2}\left[\frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]\right\} \\ &=p_{X}(x) p_{Y}(y) \end{aligned} p(x,y)=2πσ1σ21exp{21[σ12(xμ1)2+σ22(yμ2)2]}=pX(x)pY(y)

  11. Y = m a x { X 1 , X 2 , ⋯   , X n } Y=max\{X_1,X_2,\cdots, X_n\} Y=max{X1,X2,,Xn}, Z = m i n { X 1 , X 2 , ⋯   , X n } Z=min\{X_1,X_2,\cdots, X_n\} Z=min{X1,X2,,Xn}.
    F Y ( y ) = P ( Y ⩽ y ) = P ( m a x { X 1 , X 2 , ⋯   , X n } ⩽ y ) F_Y(y)=P(Y\leqslant y)=P(max\{X_1,X_2,\cdots, X_n\}\leqslant y) FY(y)=P(Yy)=P(max{X1,X2,,Xn}y)
    如果各变量独立,那么.
    F Y ( y ) = P ( X 1 ⩽ y , X 2 ⩽ y , ⋯   , X n ⩽ y ) = P ( X 1 ⩽ y ) P ( X 2 ⩽ y ) ⋯ P ( X n ⩽ y ) = [ F X ( y ) ] n \begin{aligned} F_{Y}(y) &=P\left(X_{1} \leqslant y, X_{2} \leqslant y, \cdots, X_{n} \leqslant y\right) \\ &=P\left(X_{1} \leqslant y\right) P\left(X_{2} \leqslant y\right) \cdots P\left(X_{n} \leqslant y\right) \\ &=\left[F_{X}(y)\right]^{n} \end{aligned} FY(y)=P(X1y,X2y,,Xny)=P(X1y)P(X2y)P(Xny)=[FX(y)]n
    p Y ( y ) = n [ F X ( y ) ] n − 1 p X ( y ) p_{Y}(y)=n\left[F_{X}(y)\right]^{n-1} p_{X}(y) pY(y)=n[FX(y)]n1pX(y)
    F Z ( z ) = P ( X ⩽ z ) = P ( min ⁡ ( X 1 , X 2 , ⋯   , X n ) ⩽ z ) = 1 − P ( min ⁡ ( X 1 , X 2 , ⋯   , X n ) > z ) = 1 − P ( X 1 > z , X 2 > z , ⋯   , X n > z ) = 1 − P ( X 1 > z ) P ( X 2 > z ) , ⋯   , P ( X n > z ) = 1 − [ 1 − F X ( z ) ] n \begin{aligned} F_{Z}(z) &=P(X \leqslant z)=P\left(\min \left(X_{1}, X_{2}, \cdots, X_{n}\right) \leqslant z\right) \\ &=1-P\left(\min \left(X_{1}, X_{2}, \cdots, X_{n}\right)>z\right) \\ &=1-P\left(X_{1}>z, X_{2}>z, \cdots, X_{n}>z\right) \\ &=1-P\left(X_{1}>z\right) P\left(X_{2}>z\right), \cdots, P\left(X_{n}>z\right) \\ &=1-\left[1-F_{X}(z)\right]^{n} \end{aligned} FZ(z)=P(Xz)=P(min(X1,X2,,Xn)z)=1P(min(X1,X2,,Xn)>z)=1P(X1>z,X2>z,,Xn>z)=1P(X1>z)P(X2>z),,P(Xn>z)=1[1FX(z)]n
    p z ( z ) = n [ 1 − F X ( z ) ] α − 1 p X ( z ) p_{z}(z)=n\left[1-F_{X}(z)\right]^{\alpha-1} p_{X}(z) pz(z)=n[1FX(z)]α1pX(z)

  12. 定理:设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是n个独立同分布随机变量, F X ( x ) F_X(x) FX(x),和 p X ( x ) p_X(x) pX(x)是他们的分布函数和概率密度函数.其最大值 Y = m a x { X 1 , X 2 , ⋯   , X n } Y=max\{X_1,X_2,\cdots, X_n\} Y=max{X1,X2,,Xn}的分布函数于概率密度函数为
    F Y ( y ) = [ F X ( y ) ] n F_{Y}(y)=\left[F_{X}(y)\right]^{n} FY(y)=[FX(y)]n
    p Y ( y ) = n [ F X ( y ) ] n − 1 p X ( y ) p_{Y}(y)=n\left[F_{X}(y)\right]^{n-1} p_{X}(y) pY(y)=n[FX(y)]n1pX(y)
    最小值 Z = m i n { X 1 , X 2 , ⋯   , X n } Z=min\{ X_1, X_2, \cdots, X_n \} Z=min{X1,X2,,Xn}的分布函数,和概率密度函数为
    F z ( z ) = 1 − [ 1 − F X ( z ) ] n F_{z}(z)=1-\left[1-F_{X}(z)\right]^{n} Fz(z)=1[1FX(z)]n
    p z ( z ) = n [ 1 − F X ( z ) ] n − 1 p X ( z ) p_{z}(z)=n\left[1-F_{X}(z)\right]^{n-1} p_{X}(z) pz(z)=n[1FX(z)]n1pX(z)

  13. 在概率论中把寻求独立随机变量和的分布的运算称为卷积运算

  14. 泊松分布的卷积

    X ∼ P ( λ 1 ) , Y ∼ P ( λ 2 ) X \sim P\left(\lambda_{1}\right), Y \sim P\left(\lambda_{2}\right) XP(λ1),YP(λ2)
    且X,Y独立,则 X + Y ∼ P ( λ 1 + λ 2 ) X+Y \sim P\left(\lambda_{1}+\lambda_{2}\right) X+YP(λ1+λ2)

  15. 二项分布的卷积. X ∼ b ( n , p ) , Y ∼ b ( m , p ) X \sim b(n, p), Y \sim b(m, p) Xb(n,p),Yb(m,p) 且X,Y独立,则
    X + Y ∼ b ( n + m , p ) X+Y \sim b(n+m, p) X+Yb(n+m,p)
    注意,两个分布的p必须相同.不然是无法卷积的.p可被认为是尺度.不同的尺度不能卷积.

  16. 卷积公式:设 X 与 Y
    为两个相互独立的连续随机变量,其密度函数为 p X ( x ) , p Y ( y ) p_X(x),p_Y(y) pX(x),pY(y),则 Z = X + Y Z=X+Y Z=X+Y的概率密度函数为
    p z ( z ) = ∫ − ∞ ∞ p x ( z − y ) p y ( y ) d y p_{z}(z)=\int_{-\infty}^{\infty} p_{x}(z-y) p_{y}(y) d y pz(z)=px(zy)py(y)dy 证明:
    F z ( z ) = P ( X + Y ⩽ z ) = ∬ x + Y ⩽ z p X ( x ) p Y ( y ) d x d y = ∫ − ∞ ∞ { ∫ − ∞ z − y P X ( x ) d x } p Y ( y ) d y = ∫ − ∞ ∞ F X ( z − y ) p Y ( y ) d y \begin{aligned} F_{z}(z) &=P(X+Y \leqslant z)=\iint_{x+Y \leqslant z} p_{X}(x) p_{Y}(y) d x d y \\ &=\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{z-y} P_{X}(x) d x\right\}p_Y(y) d y \\ &=\int_{-\infty}^{\infty} F_{X}(z-y) p_{Y}(y) d y \end{aligned} Fz(z)=P(X+Yz)=x+YzpX(x)pY(y)dxdy={zyPX(x)dx}pY(y)dy=FX(zy)pY(y)dy

  17. 独立的正态分布的卷积.
    X + Y ∼ N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) X+Y \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right) X+YN(μ1+μ2,σ12+σ22)

  18. 伽马分布的卷积,独立下.
    X + Y ∼ G a ( α 1 + α 2 , λ ) X+Y \sim G a\left(\alpha_{1}+\alpha_{2}, \lambda\right) X+YGa(α1+α2,λ)
    λ \lambda λ是尺度信息,不同尺度不能卷积.

  19. χ 2 \chi^2 χ2分布的由来,独立同分布 N ( 0 , 1 ) N(0,1) N(0,1),的随机变量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots, X_n X1,X2,,Xn.它们的组合 Y = X 1 2 + X 2 2 + ⋯ + X n 2 Y=X_1^2+X_2^2+\cdots+X_n^2 Y=X12+X22++Xn2服从自由度为n的 χ 2 \chi^2 χ2分布.设 Z = X 1 2 Z=X_1^2 Z=X12的概率密度函数.
    p Z ( z ) = { 1 2 π z − 1 2 e − z / 2 , z > 0 0 , z ⩽ 0 p_{Z}(z)=\left\{\begin{array}{ll}\frac{1}{\sqrt{2 \pi}} z^{-\frac{1}{2}} e^{-z / 2}, & z>0 \\ 0, & z \leqslant 0\end{array}\right. pZ(z)={2π 1z21ez/2,0,z>0z0

    由此可见,这正是一个伽马分布 G a ( 1 2 , 1 2 ) Ga(\frac{1}{2}, \frac{1}{2}) Ga(21,21),如此以来 Y Y Y的概率密度函数为
    p n ( y ) = { 1 2 n / 2 Γ ( n 2 ) y n 2 − 1 e − y / 2 , y > 0 0 , y ⩽ 0 p_{n}(y)=\left\{\begin{array}{ll}\frac{1}{2^{n / 2} \Gamma\left(\frac{n}{2}\right)} y^{\frac{n}{2}-1} e^{-y / 2}, & y>0 \\ 0, & y \leqslant 0\end{array}\right. pn(y)={2n/2Γ(2n)1y2n1ey/2,0,y>0y0

    实际上是 G a ( n 2 , 1 2 ) Ga(\frac{n}{2},\frac{1}{2}) Ga(2n,21),这正是自由度为n的 χ 2 \chi^2 χ2分布.

  20. 二维随机变量的期望

    E [ g ( X , Y ) ] = ∑ i ∑ j g ( x i , y j ) P ( X = x i , Y = y j ) . E[g(X,Y)]=\sum_{i}\sum_{j}g(x_i,y_j)P(X=x_i,Y=y_j). E[g(X,Y)]=ijg(xi,yj)P(X=xi,Y=yj).
    E [ g ( X , Y ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x , y ) p ( x , y ) d x d x E[g(X,Y)]=\int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}g(x,y)p(x,y)dxdx} E[g(X,Y)]=g(x,y)p(x,y)dxdx

  21. E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y),注意这个是不需要独立就可以成立的.
    E ( X 1 + X 2 + ⋯ + X n ) = E ( X 1 ) + E ( X 2 ) + ⋯ + E ( X n ) E\left(X_{1}+X_{2}+\cdots+X_{n}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{n}\right) E(X1+X2++Xn)=E(X1)+E(X2)++E(Xn)

  22. 二维独立随机变量

    E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y) V a r ( X ± Y ) = V a r ( X ) + V a r ( Y ) Var(X\pm Y)=Var(X)+Var(Y) Var(X±Y)=Var(X)+Var(Y)

  23. 对于 χ 2 ( n ) \chi^2(n) χ2(n)分布.
    E ( χ 2 ) = E ( X 1 2 ) + E ( X 2 2 ) + ⋯ + E ( X n 2 ) = n E\left(\chi^{2}\right)=E\left(X_{1}^{2}\right)+E\left(X_{2}^{2}\right)+\cdots+E\left(X_{n}^{2}\right)=n E(χ2)=E(X12)+E(X22)++E(Xn2)=n
    Var ⁡ ( χ 2 ) = Var ⁡ ( X 1 2 ) + Var ⁡ ( X 2 2 ) + ⋯ + Var ⁡ ( X n 2 ) = 2 n \operatorname{Var}\left(\chi^{2}\right)=\operatorname{Var}\left(X_{1}^{2}\right)+\operatorname{Var}\left(X_{2}^{2}\right)+\cdots+\operatorname{Var}\left(X_{n}^{2}\right)=2 n Var(χ2)=Var(X12)+Var(X22)++Var(Xn2)=2n

  24. 协方差 Cov ⁡ ( X , Y ) = E [ ( X − E X ) ( Y − E Y ) ] \operatorname{Cov}(X, Y)=E[(X-E X)(Y-E Y)] Cov(X,Y)=E[(XEX)(YEY)]
    Cov ⁡ ( X , Y ) = Cov ⁡ ( Y , X ) \operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X) Cov(X,Y)=Cov(Y,X)

    Cov ⁡ ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) \operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y) Cov(X,Y)=E(XY)E(X)E(Y)

    如果X,Y独立.那么 C o v ( X , Y ) = 0 Cov(X,Y)=0 Cov(X,Y)=0

  25. 如果 Var ⁡ ( X ) = σ X 2 , Var ⁡ ( Y ) = σ Y 2 \operatorname{Var}(X)=\sigma_{X}^{2}, \operatorname{Var}(Y)=\sigma_{Y}^{2} Var(X)=σX2,Var(Y)=σY2,有
    [ Cov ⁡ ( X , Y ) ] 2 ⩽ σ X 2 σ Y 2 [\operatorname{Cov}(X, Y)]^{2} \leqslant \sigma_{X}^{2} \sigma_{Y}^{2} [Cov(X,Y)]2σX2σY2

  26. V a r ( X ± Y ) = V a r ( X ) + V a r ( Y ) ± 2 C o v ( X , Y ) Var(X\pm Y)=Var(X)+Var(Y)\pm 2Cov(X,Y) Var(X±Y)=Var(X)+Var(Y)±2Cov(X,Y)

  27. 线性相关系数
    Corr ⁡ ( X , Y ) = Cov ⁡ ( X , Y ) σ X σ Y \operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} Corr(X,Y)=σXσYCov(X,Y)
    注意这个系数反应不出非线性关系.它是反应的线性相关性.

C o r r ( X , Y ) > 0 Corr(X,Y)>0 Corr(X,Y)>0,正相关.

C o r r ( X , Y ) < 0 Corr(X,Y)<0 Corr(X,Y)<0,负相关.

C o r r ( X , Y ) = 0 Corr(X,Y)=0 Corr(X,Y)=0,非线性相关.

  1. 对于二维正态分布. ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X, Y) \sim N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right) (X,Y)N(μ1,μ2,σ12,σ22,ρ),
    ρ \rho ρ就是X,Y的相关系数.

  2. − 1 ⩽ C o r r ( X , Y ) ⩽ 1 -1\leqslant Corr(X,Y)\leqslant 1 1Corr(X,Y)1

  3. C o r r ( X , Y ) = ± 1 Corr(X,Y)=\pm 1 Corr(X,Y)=±1的充要条件是X与Y间几乎出处有线性关系.

  4. 如果X,Y独立, C o r r ( X , Y ) = 0 Corr(X,Y)=0 Corr(X,Y)=0,反之却不.比如. X ∼ N ( 0 , 1 ) , Y = X 2 X\sim N(0,1),Y=X^2 XN(0,1),Y=X2
    计算出它的相关系数. C o v ( X , Y ) = 0. Cov(X,Y)=0. Cov(X,Y)=0.
    但是这两个随机变量却含有二次相关性.

在这里插入图片描述
在这里插入图片描述
105. 条件分布与条件期望示意图

在这里插入图片描述

  1. 给定 Y = y j Y=y_j Y=yj下,X的条件分布.
    P ( X = x i ∣ Y = y j ) = p i j p ⋅ j , i = 1 , 2 , ⋯ P(X=x_i|Y=y_j)=\frac{p_{ij}}{p_{\cdot j}},i=1,2,\cdots P(X=xiY=yj)=pjpij,i=1,2,

  2. 给定 X = x j X=x_j X=xj下,Y的条件分布.
    P ( Y = y i ∣ x j ) = p i j p j ⋅ P(Y=y_i|x_j)=\frac{p_{ij}}{p_{j\cdot}} P(Y=yixj)=pjpij

  3. 连续随机变量的条件分布

p ( x ∣ y ) = p ( x , y ) p Y ( y ) p(x|y)=\frac{p(x,y)}{p_Y(y)} p(xy)=pY(y)p(x,y) p ( y ∣ x ) = p ( x , y ) p X ( x ) p(y|x)=\frac{p(x,y)}{p_X(x)} p(yx)=pX(x)p(x,y)

  1. 二维正态分布的条件分布仍然为正态分布.

  2. 如何构造联合分布.

由实际数据归纳而得联合分布 p ( x , y ) p(x,y) p(x,y).

由独立性 p ( x , y ) = p X ( x ) p Y ( y ) p(x,y)=p_X(x)p_Y(y) p(x,y)=pX(x)pY(y)

由条件分布来构建联合分布 p ( x , y ) = p X ( x ) p ( y ∣ x ) p(x,y)=p_X(x)p(y|x) p(x,y)=pX(x)p(yx)
p ( x , y ) = p ( x ∣ y ) p Y ( y ) p(x,y)=p(x|y)p_Y(y) p(x,y)=p(xy)pY(y)

贝叶斯公式的概率密度函数形式
p ( x ∣ y ) = p ( y ∣ x ) p x ( x ) p Y ( y ) = p ( y ∣ x ) p X ( x ) ∫ − ∞ x p ( y ∣ x ) p X ( x ) d x \begin{aligned} p(x | y) &=\frac{p(y | x) p_{x}(x)}{p_{Y}(y)} \\ &=\frac{p(y | x) p_{X}(x)}{\int_{-\infty}^{x} p(y | x) p_{X}(x) d x} \end{aligned} p(xy)=pY(y)p(yx)px(x)=xp(yx)pX(x)dxp(yx)pX(x)

  1. 条件期望

E ( X ∣ y ) = { ∑ i x i P ( X = x i ∣ Y = y ) ∫ − ∞ ∞ x p ( x ∣ y ) d x E(X | y)=\left\{\begin{array}{l}\sum_{i} x_{i} P\left(X=x_{i} | Y=y\right) \\ \int_{-\infty}^{\infty} x p(x | y) d x\end{array}\right. E(Xy)={ixiP(X=xiY=y)xp(xy)dx

  1. 条件期望的性质

E ( a 1 X 1 + a 2 X 2 ∣ y ) = a 1 E ( X 1 ∣ y ) + a 2 E ( X 8 ∣ y ) E\left(a_{1} X_{1}+a_{2} X_{2} | y\right)=a_{1} E\left(X_{1} | y\right)+a_{2} E\left(X_{8} | y\right) E(a1X1+a2X2y)=a1E(X1y)+a2E(X8y)

条件期望的函数形式
E [ g ( X ) ∣ y ] = { ∑ i g ( x i ) P ( X = x i ∣ Y = y ) ∫ − ∞ ∞ g ( x ) p ( x ∣ y ) d x E[g(X) | y]=\left\{\begin{array}{l}\sum_{i} g\left(x_{i}\right) P\left(X=x_{i} | Y=y\right) \\ \int_{-\infty}^{\infty} g(x) p(x | y) d x\end{array}\right. E[g(X)y]={ig(xi)P(X=xiY=y)g(x)p(xy)dx

  1. 条件期望的期望 E [ E [ X ∣ Y ] ] = E [ X ] E[E[X|Y]]=E[X] E[E[XY]]=E[X]

  2. 中心极限定理:n个独立同分布的随机变量之和近似于正态分布.n越大越近似.

  3. E ( X i ) = μ , V a r [ X i ] = σ 2 E(X_i)=\mu,Var[X_i]=\sigma^2 E(Xi)=μ,Var[Xi]=σ2.则
    Y n ∗ = X 1 + X 2 + ⋯ + X n − n μ n σ Y_n^{*}=\frac{X_1+ X_2+ \cdots+ X_n -n\mu}{\sqrt{n}\sigma} Yn=n σX1+X2++Xnnμ
    n → ∞ n \rightarrow \infty n时,上式收敛于标准正态分布.
    lim ⁡ n → ∞ P ( Y n ∗ ⩽ y ) = Φ ( y ) \lim _{n \rightarrow \infty} P\left(Y_{n}^{*} \leqslant y\right)=\Phi(y) nlimP(Yny)=Φ(y)

  4. 随机变量 Y n ∼ b ( n , p ) Y_n\sim b(n,p) Ynb(n,p).则 Y n ∗ = ( Y n − n p ) / n p ( 1 − p ) Y_n^{*}=(Y_n-np)/\sqrt{np(1-p)} Yn=(Ynnp)/np(1p) ,满足
    lim ⁡ n → ∞ P ( Y n − n P n p ( 1 − p ) ⩽ y ) = Φ ( y ) \lim _{n \rightarrow \infty} P\left(\frac{Y_{n}-n P}{\sqrt{n p(1-p)}} \leqslant y\right)=\Phi(y) nlimP(np(1p) YnnPy)=Φ(y)

  5. 独立不同分布时,假如 E ( X n ) = μ n , V a r ( X n ) = σ n 2 , n = 1 , 2 , ⋯ E(X_n)=\mu_n,Var(X_n)=\sigma_n^2, n=1,2,\cdots E(Xn)=μn,Var(Xn)=σn2,n=1,2,.
    lim ⁡ n → ∞ 1 B n 3 ∑ i = 1 n E ( ∣ X i − μ i ∣ 3 ) = 0 \lim _{n \rightarrow \infty} \frac{1}{B_{n}^{3}} \sum_{i=1}^{n} E\left(\left|X_{i}-\mu_{i}\right|^{3}\right)=0 nlimBn31i=1nE(Xiμi3)=0
    lim ⁡ n → ∞ P ( 1 B n ∑ i = 1 n ( X i − μ i ) ⩽ y ) = Φ ( y ) \lim _{n \rightarrow \infty} P\left(\frac{1}{B_{n}} \sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right) \leqslant y\right)=\Phi(y) nlimP(Bn1i=1n(Xiμi)y)=Φ(y)
    其中B是中心距.
    B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k , k = 2 , 3 , ⋯ B_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{k}, k=2,3, \cdots Bk=n1i=1n(XiXˉ)k,k=2,3,

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值