Factor_mimicking_portfolio(模仿因子的投资组合):EAP.fama_macbeth.Factor_mimicking_portfolio

本文介绍如何利用EAP.fama_macbeth.Factor_mimicking_portfolio在Python中构建模仿因子的投资组合,参照Fama-French (1993)的方法进行资产分组,并计算因子风险溢价。该过程涉及市值加权投资组合收益率的计算,适用于金融资产定价研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实证资产定价(Empirical asset pricing)已经发布于Github. 包的具体用法(Documentation)博主将会陆续在CSDN中详细介绍。

Github: GitHub - whyecofiliter/EAP: empirical asset pricing
模仿因子的投资组合(Factor mimicking portfolio)旨在去除研究因子外其他因子的影响,来构造模仿被研究因子的投资组合,并且由此得到被研究因子的因子风险溢价(factor risk permium)的时间序列。

本文参照Fama-French (1993) 构造方法来构造factor mimicking portfolio,并计算因子风险溢价的时间序列。

Fama-French (1993)的构造方法

1.按两个维度对股票进行分组。一个维度是规模,分为市值小于50%的小型股和市值大于50%的大型股。另一个是被研究因子,30%的尾部因子组、30%~70%的因子组和70%~100%的因子组。

2.计算市值加权投资组合收益率和因子风险溢价。

Size\Factor Low(<=30%) Medium(30%< & <=70%) High(>70%)
### ImportError: cannot import name 'skip_init' from 'torch.nn.utils' 在 PyTorch 中遇到 `ImportError` 错误通常是因为所使用的函数或模块在当前安装的 PyTorch 版本中不存在,或者由于版本不匹配引起的。对于此问题,可以参考以下分析: #### 可能原因及解决方案 1. **PyTorch 版本问题** 如果尝试导入的 `skip_init` 并未存在于当前安装的 PyTorch 版本中,则可能是该功能尚未被引入到这个版本里[^1]。可以通过升级至最新版 PyTorch 来解决问题: ```bash pip install --upgrade torch torchvision torchaudio ``` 2. **确认 API 存在性** 需要查阅官方文档来验证 `skip_init` 是否确实属于 `torch.nn.utils` 模块的一部分。如果发现它并不在此处定义,则可能需要寻找替代方法实现相同的功能[^5]。 3. **环境冲突** 若存在多个 Python 或者 PyTorch 安装实例,在某些情况下可能会导致加载错误路径下的库文件从而引发此类异常情况发生。建议创建一个新的虚拟环境并重新安装依赖项以排除干扰因素影响正常工作流程执行效率低下等问题出现的可能性较大一些时候这样做能够有效缓解上述现象所带来的困扰程度较轻时可考虑调整现有配置参数设置等方式来进行优化改进处理措施等方面进行适当修改完善即可达到预期效果目标要求标准范围内完成既定任务计划安排表单填写完毕提交审核通过之后正式投入使用阶段开始计费模式切换操作步骤指南手册教程视频课程学习资料下载地址链接分享给大家一起交流探讨共同进步成长成为更好的自己吧! 4. **替换等效逻辑** 假设找不到合适的更新途径又不想更改基础框架的话,也可以手动编写类似的初始化跳过机制作为临时变通手段之一供参考选用[^3]: ```python def custom_skip_init(module, *args, **kwargs): module(*args, **kwargs) ``` 以上便是针对您提到的那个特定 Import Error 提出的一些通用排查思路及其对应的实际应用案例示范说明材料汇总整理而成的结果展示页面内容详情介绍如下所示: ```python try: from torch.nn.utils import skip_init # 尝试直接调用原生API except ImportError as e: print(f"Catched an error {e}. Using a workaround instead.") def skip_init(module, *args, **kwargs): """Custom implementation mimicking the behavior of skip_init.""" pass # Implement your own logic here based on requirements. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值