概率机器人致力于研究机器人感知和行为的不确定性。概率机器人的主要思想就是用概率理论的运算去明确地表示这种不确定性。换句话说,不再依赖可能出现的情况单一的“最好推测”,而是用概率算法来表示在整个推测空间的概率分布信息。这样做,就可以以数学上合理的方式来表示模糊性和置信度。可以根据存在的不确定性选择相对鲁棒的控制技术,当相应的控制方式是较好的选择时,概率机器人技术甚至可以主动选择以减少机器人的不确定性。
如何通俗的理解置信度和置信区间?
http://www.360doc.com/content/18/0317/16/15033922_737796626.shtml
概率范式通过在整个位置空间上的一个概率密度函数来表示机器人的瞬时置信度。机器人感知问题用概率描述,就是一个状态估计问题。第一章的定位实例使用了被称为贝叶斯滤波的算法来进行定位空间上的后验估计。
一个例子搞清楚(先验分布/后验分布/似然估计)
https://blog.csdn.net/qq_23947237/article/details/78265026
概率算法也能预知未来的不确定性,并在决定正确的控制选择时,对未来不确定性进行考虑,这样的一个算法叫海岸导航。(将在16章讨论)。
概率算法对传感器的精度要求比许多反应技术也要低,其唯一的控制输入即为瞬时传感器的输入。从概率的角度,机器人学习问题就是一个长期的估计问题。但也有劣势。概率算法最经常被提到的两个局限是计算的复杂性和近似的必要性(computational complexity & need to approximate)。概率算法本质上比非概率的算法效率低。这是因为他考虑的是整个概率密度而不是单一的推测。必要的近似是源于:大多数机器人世界是连续的,精确的后验分布往往很难计算。幸运的是,不确定性有时可以用一个紧凑的参数模型(如高斯模型)很好地近似。