写在前面:本文为原创,如需转载请注明出处。欢迎大家留言共同探讨,有误的地方也希望指出。另如果有好的SLAM、ROS等相关交流群也希望可以留言给我,在此先谢过了。
本文参考:《概率机器人》
0引言
概率是进行机器人控制、定位与建图的核心基础知识,相信这一点大家都深有体会。各种滤波算法都是根据贝叶斯概率公式的基础所衍生出来的算法。其实这点也很好理解,毕竟任何对外界的测量都是包含一定的不确定性的,而且运行的执行元件也不是完全精确,所以通过“估计”来处理机器人的测量和运动是更可以提高系统精度和鲁棒性的做法。所以,理清一些关键的概率概念就十分必要了。本文将从以下几个方面来进行整理,增加自己对这些概念的理解,如有需求也会随时扩充。
- 随机变量
- 概率密度函数
- 条件概率
- 全概率定理
- 先验/后验概率分布
- 条件独立
- 期望与协方差
- 表征演变的动态贝叶斯网络
- 置信分布
1 随机变量
随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。
以上是百度百科的表达,说的直白一些就是随机变量可以成为一些值,而且这些值是按照某种概率的行为来取值的。
这里用X来表示随机变量,用x来表示其取的值。那么举个例子就可以是, X可以表示“明天的天气”这个随机变量,其可以取的值有“晴天”、“下雨”等等。加入有30%的概率下雨