机器人控制概率基础:条件概率、全概率定理、贝叶斯准则、置信分布等

写在前面:本文为原创,如需转载请注明出处。欢迎大家留言共同探讨,有误的地方也希望指出。另如果有好的SLAM、ROS等相关交流群也希望可以留言给我,在此先谢过了。
本文参考:《概率机器人》

0引言

概率是进行机器人控制、定位与建图的核心基础知识,相信这一点大家都深有体会。各种滤波算法都是根据贝叶斯概率公式的基础所衍生出来的算法。其实这点也很好理解,毕竟任何对外界的测量都是包含一定的不确定性的,而且运行的执行元件也不是完全精确,所以通过“估计”来处理机器人的测量和运动是更可以提高系统精度和鲁棒性的做法。所以,理清一些关键的概率概念就十分必要了。本文将从以下几个方面来进行整理,增加自己对这些概念的理解,如有需求也会随时扩充。

  • 随机变量
  • 概率密度函数
  • 条件概率
  • 全概率定理
  • 先验/后验概率分布
  • 条件独立
  • 期望与协方差
  • 表征演变的动态贝叶斯网络
  • 置信分布

1 随机变量

随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。
以上是百度百科的表达,说的直白一些就是随机变量可以成为一些值,而且这些值是按照某种概率的行为来取值的。
这里用X来表示随机变量,用x来表示其取的值。那么举个例子就可以是, X可以表示“明天的天气”这个随机变量,其可以取的值有“晴天”、“下雨”等等。加入有30%的概率下雨

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值