角速度的相似变换定理的证明

1.问题引出

秦永元《惯性导航原理》第二版
上图为秦永元《惯性导航》P281的方向余弦法,其中9.5.14式上面的“应用角速度反对称矩阵的相似变换关系”及下面的公式令人迷惑,书中未加证明。在找到一些证明后,均不太满意。
偶尔在一本老书陈哲的《捷联惯导系统原理》里,惊喜发现上面有非常完整的证明,现在将其分享出,同时感谢前辈付出。

2.问题描述

以下引用内容均来自 陈哲《捷联惯导系统原理》,p110-114。

在运动学中,角速度矩阵从一个直角坐标系转换到另一个直角坐标系后,所获得的新角速度矩阵与原角速度矩阵相似。
定理: 设角速度向量 ω ˉ \bar{\omega } ωˉ及其反对称矩阵分别为
ω ˉ = [ ω x ω y ω z ] , Q = [ 0 − ω z ω y ω z 0 − ω x − ω y ω x 0 ] ( 1 ) \bar{\omega} =\left[ \begin{matrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \\ \end{matrix} \right], Q=\left[ \begin{matrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0& -\omega_{x} \\ -\omega_{y} & \omega_{x} &0 \\ \end{matrix} \right](1) ωˉ=ωxωyωz,Q=0ωzωyωz0ωxωyωx0(1)
设实施相似变换的矩阵C为
C = [ C 11 C 12 C 13 C 21 C 22 C 23 C 31 C 32 C 33 ] ( 2 ) C=\left[ \begin{matrix} C_{11}&C_{12}&C_{13} \\ C_{21}&C_{22}&C_{23} \\ C_{31}&C_{32}&C_{33} \\ \end{matrix} \right](2) C=C11C21C31C12C22C32C13C23C33(2)
且C为正交矩阵。则反对称矩阵Q的相似变换仍为一个反对称矩阵 Q ∗ Q^{*} Q,且 Q ∗ Q^{*} Q的元与列向量 ω ˉ \bar{\omega } ωˉ通过 C − 1 C^{-1} C1的变换得到的向量 ω ˉ ∗ \bar{\omega}^{*} ωˉ的各元相对应,即 Q ∗ Q^{*} Q ω ˉ ∗ \bar{\omega}^{*} ωˉ的反对称矩阵。写成公式形式即
Q ∗ = C − 1 Q C = [ 0 − ω z ∗ ω y ∗ ω z ∗ 0 − ω x ∗ − ω y ∗ ω x ∗ 0 ] ( 3 ) Q^{*} = C^{-1}QC= \left[ \begin{matrix} 0 & -\omega_{z}^{*} & \omega_{y}^{*} \\ \omega_{z}^{*} & 0& -\omega_{x}^{*} \\ -\omega_{y}^{*} & \omega_{x}^{*} &0 \\ \end{matrix} \right](3) Q=C1QC=0ωzωyωz0ωxωyωx0(3)
ω ˉ ∗ = [ ω x ∗ ω y ∗ ω z ∗ ] = C − 1 ω ˉ ( 4 ) \bar{\omega}^{*}= \left[ \begin{matrix} \omega_{x}^{*} \\ \omega_{y}^{*} \\ \omega_{z}^{*} \\ \end{matrix} \right]=C^{-1}\bar{\omega}(4) ωˉ=ωxωyωz=C1ωˉ(4)

3.问题解决

分析:之前也尝试过最简单直接的,展开(3)左边的变换式看是否等于右边反对称阵,可无法化简左边的一大坨式子(下文式(6))。而当意识到,正交矩阵的性质之一为各元素等于其代数余子式时(下文式(7)),问题迎刃而解。
书中证明过程为:

证明:
(1)展开 ω ˉ \bar{\omega} ωˉ的变换式
( 4 ) (4) (4)展开,并考虑C为正交矩阵,即 C − 1 = C T C^{-1}=C^T C1=CT,于是有
ω ˉ = C − 1 ω ˉ = [ C 11 C 21 C 31 C 12 C 22 C 32 C 13 C 23 C 33 ] [ ω x ω y ω z ] = [ C 11 ω x + C 21 ω y + C 31 ω z C 12 ω x + C 22 ω y + C 32 ω z C 13 ω x + C 23 ω y + C 33 ω z ] = [ ω x ∗ ω y ∗ ω z ∗ ] ( 5 ) \bar{\omega }=C^{-1}\bar{\omega}=\left[ \begin{matrix} C_{11}&C_{21}&C_{31} \\ C_{12}&C_{22}&C_{32} \\ C_{13}&C_{23}&C_{33} \\ \end{matrix} \right]\left[ \begin{matrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \\ \end{matrix} \right] \\ =\left[ \begin{matrix} C_{11}\omega_{x}+C_{21} \omega_{y} +C_{31} \omega_{z} \\ C_{12}\omega_{x}+C_{22} \omega_{y} +C_{32} \omega_{z} \\ C_{13}\omega_{x}+C_{23} \omega_{y} +C_{33} \omega_{z} \\ \end{matrix} \right] \\= \left[ \begin{matrix} \omega_{x}^{*} \\ \omega_{y}^{*} \\ \omega_{z}^{*} \\ \end{matrix} \right](5) ωˉ=C1ωˉ=C11C12C13C21C22C23C31C32C33ωxωyωz=C11ωx+C21ωy+C31ωzC12ωx+C22ωy+C32ωzC13ωx+C23ωy+C33ωz=ωxωyωz(5)
(2)展开 Q Q Q的相似变换式
由式 ( 3 ) (3) (3)可得
Q ∗ = C − 1 Q C = [ C 11 C 21 C 31 C 12 C 22 C 32 C 13 C 23 C 33 ] [ 0 − ω z ω y ω z 0 − ω x − ω y ω x 0 ] [ C 11 C 12 C 13 C 21 C 22 C 23 C 31 C 32 C 33 ] = [ 0 ( C 22 C 31 − C 32 C 21 ) ω x + ( C 32 C 11 − C 12 C 31 ) ω y + ( C 12 C 21 − C 22 C 11 ) ω z ( C 23 C 31 − C 21 C 33 ) ω x + ( C 11 C 33 − C 13 C 31 ) ω y + ( C 13 C 21 − C 23 C 11 ) ω z ( C 21 C 32 − C 22 C 31 ) ω x + ( C 12 C 31 − C 11 C 32 ) ω y + ( C 11 C 22 − C 12 C 21 ) ω z 0 ( C 23 C 32 − C 22 C 33 ) ω x + ( C 12 C 33 − C 13 C 32 ) ω y + ( C 13 C 22 − C 23 C 12 ) ω z ( C 21 C 33 − C 23 C 31 ) ω x + ( C 13 C 31 − C 11 C 33 ) ω y + ( C 11 C 23 − C 13 C 21 ) ω z ( C 22 C 33 − C 32 C 23 ) ω x + ( C 13 C 32 − C 12 C 33 ) ω y + ( C 12 C 23 − C 22 C 13 ) ω z 0 ] ( 6 ) Q^{*} = C^{-1}QC=\left[ \begin{matrix} C_{11}&C_{21}&C_{31} \\ C_{12}&C_{22}&C_{32} \\ C_{13}&C_{23}&C_{33} \\ \end{matrix} \right]\left[ \begin{matrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0& -\omega_{x} \\ -\omega_{y} & \omega_{x} &0 \\ \end{matrix} \right]\left[ \begin{matrix} C_{11}&C_{12}&C_{13} \\ C_{21}&C_{22}&C_{23} \\ C_{31}&C_{32}&C_{33} \\ \end{matrix} \right] \\=\left[ \begin{matrix} 0 & ( C_{22}C_{31}-C_{32}C_{21})\omega_{x} +( C_{32}C_{11}-C_{12}C_{31})\omega_{y}+( C_{12}C_{21}-C_{22}C_{11})\omega_{z} & ( C_{23}C_{31}-C_{21}C_{33})\omega_{x} +( C_{11}C_{33}-C_{13}C_{31})\omega_{y}+( C_{13}C_{21}-C_{23}C_{11})\omega_{z} \\ ( C_{21}C_{32}-C_{22}C_{31})\omega_{x} +( C_{12}C_{31}-C_{11}C_{32})\omega_{y}+( C_{11}C_{22}-C_{12}C_{21})\omega_{z} & 0 &( C_{23}C_{32}-C_{22}C_{33})\omega_{x} +( C_{12}C_{33}-C_{13}C_{32})\omega_{y}+( C_{13}C_{22}-C_{23}C_{12})\omega_{z} \\ ( C_{21}C_{33}-C_{23}C_{31})\omega_{x} +( C_{13}C_{31}-C_{11}C_{33})\omega_{y}+( C_{11}C_{23}-C_{13}C_{21})\omega_{z} & ( C_{22}C_{33}-C_{32}C_{23})\omega_{x}+( C_{13}C_{32}-C_{12}C_{33})\omega_{y}+( C_{12}C_{23}-C_{22}C_{13})\omega_{z} & 0 \\ \end{matrix} \right](6) Q=C1QC=C11C12C13C21C22C23C31C32C330ωzωyωz0ωxωyωx0C11C21C31C12C22C32C13C23C33=0(C21C32C22C31)ωx+(C12C31C11C32)ωy+(C11C22C12C21)ωz(C21C33C23C31)ωx+(C13C31C11C33)ωy+(C11C23C13C21)ωz(C22C31C32C21)ωx+(C32C11C12C31)ωy+(C12C21C22C11)ωz0(C22C33C32C23)ωx+(C13C32C12C33)ωy+(C12C23C22C13)ωz(C23C31C21C33)ωx+(C11C33C13C31)ωy+(C13C21C23C11)ωz(C23C32C22C33)ωx+(C12C33C13C32)ωy+(C13C22C23C12)ωz0(6)
再利用正交矩阵的性质,即矩阵C中的各元素均等于其代数余子式,即
C 11 = C 22 C 33 − C 23 C 32 C 21 = C 13 C 32 − C 12 C 33 C 31 = C 12 C 23 − C 22 C 13 C 13 = C 21 C 32 − C 22 C 31 C 23 = C 12 C 31 − C 11 C 32 C 33 = C 11 C 22 − C 12 C 21 C 12 = C 23 C 31 − C 21 C 33 C 22 = C 11 C 33 − C 13 C 31 C 32 = C 21 C 13 − C 11 C 23 ( 7 ) C_{11}=C_{22}C_{33}-C_{23}C_{32}\\ C_{21}=C_{13}C_{32}-C_{12}C_{33}\\ C_{31}=C_{12}C_{23}-C_{22}C_{13}\\ C_{13}=C_{21}C_{32}-C_{22}C_{31}\\ C_{23}=C_{12}C_{31}-C_{11}C_{32}\\ C_{33}=C_{11}C_{22}-C_{12}C_{21}\\ C_{12}=C_{23}C_{31}-C_{21}C_{33}\\ C_{22}=C_{11}C_{33}-C_{13}C_{31}\\ C_{32}=C_{21}C_{13}-C_{11}C_{23}\\ (7) C11=C22C33C23C32C21=C13C32C12C33C31=C12C23C22C13C13=C21C32C22C31C23=C12C31C11C32C33=C11C22C12C21C12=C23C31C21C33C22=C11C33C13C31C32=C21C13C11C23(7)
将上式代入式 ( 6 ) (6) (6)可得
Q ∗ = [ 0 − ( C 13 ω x + C 23 ω y + C 33 ω z ) C 12 ω x + C 22 ω y + C 32 ω z C 13 ω x + C 23 ω y + C 33 ω z 0 − ( C 11 ω x + C 21 ω y + C 31 ω z ) − ( C 12 ω x + C 22 ω y + C 32 ω z ) C 11 ω x + C 21 ω y + C 31 ω z 0 ] ( 8 ) Q^{*} =\left[ \begin{matrix} 0 & -(C_{13}\omega_{x} +C_{23}\omega_{y}+ C_{33}\omega_{z} )& C_{12}\omega_{x} +C_{22}\omega_{y}+C_{32}\omega_{z} \\ C_{13}\omega_{x} + C_{23}\omega_{y}+ C_{33}\omega_{z} & 0 & -( C_{11}\omega_{x} +C_{21}\omega_{y}+ C_{31}\omega_{z}) \\ -( C_{12}\omega_{x} + C_{22}\omega_{y}+C_{32}\omega_{z} )& C_{11}\omega_{x}+C_{21}\omega_{y}+ C_{31}\omega_{z} & 0 \\ \end{matrix} \right](8) Q=0C13ωx+C23ωy+C33ωz(C12ωx+C22ωy+C32ωz)(C13ωx+C23ωy+C33ωz)0C11ωx+C21ωy+C31ωzC12ωx+C22ωy+C32ωz(C11ωx+C21ωy+C31ωz)0(8)
考虑到式 ( 5 ) (5) (5), 上式可写成
Q ∗ = [ 0 − ω z ∗ ω y ∗ ω z ∗ 0 − ω x ∗ − ω y ∗ ω x ∗ 0 ] ( 9 ) Q^{*} =\left[ \begin{matrix} 0 & -\omega_{z}^{*} & \omega_{y}^{*} \\ \omega_{z}^{*} & 0& -\omega_{x}^{*} \\ -\omega_{y}^{*} & \omega_{x}^{*} & 0 \\ \end{matrix} \right](9) Q=0ωzωyωz0ωxωyωx0(9)
定理证毕。

上述证明中,重点在于正交矩阵的各元素均等于其代数余子式这一性质,此性质在证明旋转矩阵为正交矩阵时也有体现。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值