ardupilot 方向余弦矩阵/旋转矩阵的理解

本文探讨了在惯性导航应用中方向余弦矩阵(DCM)的作用,它用于描述坐标系间的相对姿态变换。内容涵盖方向余弦矩阵的定义、特点及其微分方程的求解,强调了旋转矩阵上下标的意义,并提醒在考虑地球自转时的注意事项。
摘要由CSDN通过智能技术生成

目录

摘要

本节主要记录自己对ardupilot中用到的方向余弦矩阵/旋转矩阵的理解,欢迎批评指正,有些资料参考网上写的比较好的资料,免得查找资料麻烦。

1.序言

在惯性导航应用中,方向余弦矩阵(Direction Cosine Matrix, DCM)常用于描述两个坐标系的相对姿态。相比于欧拉角,方向余弦矩阵显得抽象许多,但它用于处理向量的投影变换则非常方便。为了更好地理解方向余弦矩阵如何表示姿态,我们先回顾一下向量和向量的坐标变换等基本概念。向量可以看成是从空间中某个点指向另一点的一个箭头。一个向量是空间中的一样东西,是客观存在的。注意不
要把向量与它的坐标这两个概念混淆,比如一个三维向量 v 并不是必须和三个实数相关联。只有当我们指定了三维空间的某个坐标系时,讨论该向量在此坐标系下的坐标才有意义,也就是找到三个实数与这个向量对应。同一个向量在不同的坐标系下会有不同的坐标,即向量在不同坐标系下的投影不一样,实现向量在不同坐标系下的投影变换是方向余弦矩阵的重要功能。

2.方向余弦矩阵

参考武汉大学资料,可以直接去他们官网下载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔城烟雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值