视觉lidar融合学习日记--LVI-SAM

本文记录了作者在研究LVI-SAM时遇到的问题与解决过程,包括vins重启、轨迹偏离等挑战。通过对VINS的分析,提出优化建议,如去除闭环、替换光流法等,并关注后端效率提升。还分享了学习线程锁和多线程操作的心得,并探讨了视觉和IMU联合优化中的关键点。
摘要由CSDN通过智能技术生成

今天开始搞lvi-sam,先看一下数据效果。

vins测试界面

1. 开始测试:

第一次测试:

节点成功启动

a. 问题: 运行没有成功结束,因为最后没有看见odometry的痕迹

结果

这期间的报错

b. 警告: 四元数没有normalize

c. 警告; 图片接收出现问题,ros传输机制有问题?

d. 报错: imu偏差过大,vins重启

e. 报错: LM分解出现问题

f. Vins这样经常报错真的好吗?

第二次:

轨迹严重偏离,vins不断重启。不过也有可能是ros传输机制的问题。

在论文中也提到了,当特征值比较少,或者imu的bias过大时,也会有这种情况发生。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值