摘要
我们激动地宣布,通过引入最新研发的EMA(Efficient Multi-scale Attention)注意力机制,YoloV8模型在目标检测任务上实现了前所未有的性能飞跃。这一创新性的改进不仅彰显了EMA模块在特征表示和上下文信息捕获方面的强大能力,更将YoloV8推向了实时目标检测领域的新高度。
一、改进概述
EMA注意力机制是专为解决现有注意力机制在通道降维时可能引入的副作用而设计的。它巧妙地采用了多尺度并行子网络结构,在不进行通道降维的前提下,有效聚合跨维度交互信息,实现了对高级特征图的精细化处理。通过将部分通道维度重塑为批量维度,并分组处理,EMA模块不仅保留了每个通道上的关键信息,还显著降低了计算开销,为YoloV8带来了更高的效率和更强的特征提取能力。
二、核心优势
-
高效多尺度信息聚合:EMA模块通过并行的1x1和3x3卷积核,在不同尺度上捕捉空间信息,增强了模型对多尺度特征的表达能力。这种多尺度信息聚合机制使得YoloV8能够更准确地识别不同大小和形状的目标。
-
跨空间学习方法:通过创新的跨空间学习方法,EMA模块融合了两个并行子网络的输出特征图,进一步提升了像素级成对关系的捕获能力。这种全局上下文信息