手把手教你如何用扣子(COZE)打造一个企业级的知识库机器人

什么是AI大模型(LLM)?

大型语言模型(如GPT-4或BERT)是基于深度学习的模型,它们通过分析大量文本数据学习语言的统计规律,从而能够完成翻译、摘要、对话等多种语言任务。这些模型通常没有特定的目标或任务,而是根据输入的文本生成相关的输出。

什么是AI Agent?

AI Agent是指可以自主执行任务或目标的系统,它可以是软件,也可以是智能机器。这些系统通过感知环境并在此基础上做出决策。AI Agent集成了多种技术,包括AI大模型(LLM),但其核心是交互性和目标导向性。例如,自动驾驶汽车就是一个AI Agent,它通过感应周围环境(如路况和障碍物)来决策接下来的行动方案,以实现安全驾驶的目的。

AI Agent的能力

可以用一个不太恰当的比喻来说明:AI大模型(LLM)就像是人的大脑,而AI Agent则是人本身。AI大模型只有输入输出功能,而AI Agent则包括AI大模型、规划(Planning)、记忆(Momory)和工具(Tools)。以前,智能机器人无法“理解”人类语言,但随着AI大模型的发展,它们开始“理解”人类语言,这使得AI Agent的能力得到了显著提升。未来,AI Agent将在各个领域发挥重要作用,改变我们的生活和工作。

二、如何用扣子(COZE)做一个AI Agent

扣子(COZE)的介绍

扣子(COZE)分为国内版和国外版:

  • 国内版:https://www.coze.cn,使用字节自研的云雀大模型和kimi大模型。

  • 国外版:https://www.coze.com/,使用GPT-3.5和GPT-4,但需要科学上网方法。

扣子(COZE)的功能

扣子提供了丰富的功能,用于定制AI Bot:

  • 提示词:设定Bot的身份、目标和技能。

  • 插件:通过API连接各种平台和服务,扩展Bot能力。

  • 工作流:用于规划和实现复杂功能逻辑的工具。

  • 触发器:根据用户时区创建定时任务。

  • 记忆库:保留对话细节,支持添加外部知识库。

  • 变量:保存用户个人信息,使回复个性化。

  • 数据库:存储和管理结构化数据,支持自然语言操作。

  • 长期记忆:总结聊天对话内容,用于更好地响应用户。

  • 开场白:设置对话开场语。

  • 用户问题建议:每次响应后提供相关问题建议。

  • 音色:选择与用户交流的音色。

  • 数据分析:提供Bot使用情况的数据分析看板。

  • 多发布渠道:支持将Bot发布到多种社交应用中。

搭建知识库机器人的实际案例

1. 背景与目的

随着AI信息的爆炸式增长,查找和分辨高质量内容变得困难。

2. 问题与挑战

扣子中的AI大模型(云雀、kimi)在检索时容易“夹带私货”,而GPT-4则表现更为稳定。通过调试提示词和工作流,作者减少了这种问题的出现。

3. 工作流程
  • 站内信息整合:将网站内信息整合成表格,便于多维度搜索。

  • 创建知识库:上传表格到扣子平台,设置索引项。

  • 创建工作流:设计从用户输入到模型输出的流程,包括知识库节点和大模型节点。

  • 编写Bot提示词:设定Bot的角色、任务和技能,确保回答准确且个性化。

  • 调试与优化:通过试运行调整参数,确保机器人表现符合预期。

  • 发布:将Bot发布到多个渠道,供用户使用。

4. 各渠道体验

除了订阅号表现不稳定外,其他渠道(如豆包、飞书)均表现良好。用户可以通过这些渠道与知识库机器人进行交互,获得高效的检索服务。

三、AI Agent的未来

知识库机器人只是AI Agent的一个小应用场景。未来,AI Agent将在企业内部发挥更大作用,如员工培训、答疑、文案设计、人事分析等。通过多Agents模式和长期记忆功能,AI Agent将不断优化和总结,成为企业的“超级数字员工”,降低成本、提高效率、提升客户体验和企业资产价值。对于企业员工而言,掌握AI技能将成为必备能力,让AI成为自己的助理,专注于更有创意和价值的工作。

总结:本文详细探讨了如何利用扣子(COZE)平台构建一个企业级的知识库机器人,从理论到实践逐步展开。通过案例展示了AI Agent在信息处理和管理方面的巨大潜力,并展望了其在未来工作和生活中的广泛应用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值