通信原理板块——截短循环码、BCH码、RS码

微信公众号上线,搜索公众号小灰灰的FPGA,关注可获取相关源码,定期更新有关FPGA的项目以及开源项目源码,包括但不限于各类检测芯片驱动、低速接口驱动、高速接口驱动、数据信号处理、图像处理以及AXI总线等
在这里插入图片描述
1、截短循环码(truncated cyclic code)
设计纠错编码方案,信息位数k、码长n和纠错能力都是预先给定的。
采用将码长截短的方法,得到满足需求的编码。
设给定一个(n,k)循环码,共有2^k
种码组,使其前i(0<i<k)个信息位全为“0”,变成仅有2^(k-i)种码组,从中删去这i位全“0”的信息位,最终得到一个(n-i,k-i)的线性码。即为截短循环码。
截短循环码与截短前的循环码至少具有相同的纠错能力,且截短循环码的编解码方法仍和截短前的方法一样。
2、BCH码
BCH码是一种获得广泛应用的能够纠正多个错码的循环码。
BCH码解决了生成多项式与纠错能力的关系,可以在给定纠错能力要求的条件下,寻找码的生成多项式。
BCH码分为两类,即本原BCH码和非本原BCH码
①本原BCH码
本原BCH码的生成多项式g(x)中含有最高次数为m的本原多项式,且码长为n=(2^m-1),其中m≥3,为正整数
BCH码的码长n与监督位、纠错个数t之间的关系
对于正整数m(m≥3)和正整数t(t<m/2),必定存在一个码长为n=(2^m-1),监督位为n-k≤mt,能纠正所有不多于t个随机错误的BCH码
通过查找表可获取生成多项式g(x),生成多项式系数是用八进制数字列出的
在这里插入图片描述
在这里插入图片描述
②非本原BCH码
本原BCH码的生成多项式g(x)中不含有最高次数为m的本原多项式,且码长为n,是(2^(m-1))
的一个因子,码长n一定除得尽(2^m-1)
在这里插入图片描述

③扩展BCH码
BCH码的长度都为奇数,为了得到偶数长度的BCH码,并增大检错能力,在BCH码生成多项式中乘上一个因式(x+1),得到扩展BCH码(n+1,k)
扩展BCH码相当于在原BCH码上增加一个校验位,码距比原BCH码增加1,不再具有循环性。
3、RS码
RS码是一类具有很强纠错能力的多进制BCH码
对于m进制的RS码的码长为n=m-1=2^q-1,其中q≥2,为整数
对于能够纠正t个错误的RS码,监督码元数目为r=2t,最小码距为d0=2t+1
RS码的生成多项式为g(x)=(x+α)×(x+α^2)
……(x+α^(2t))
其中α为伽罗华域GF(2^q)中的本原元
RS码适用于存在突发错误的信道,比如移动通信网等衰落信道中。
也适用于多进制调制场合,因为是多进制纠错编码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小灰灰的FPGA

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值