1. 引言
印刷电路板(PCB)广泛应用于电子设备中,其生产制造过程中的质量检测至关重要。PCB板的缺陷检测是一项复杂且耗时的任务,传统的人工检测方式效率低下且容易出现误判。因此,采用基于深度学习的自动化缺陷检测系统成为了一种新的解决方案。
本项目结合YOLOv8深度学习目标检测模型,通过搭建一个用户友好的UI界面,实现对PCB板缺陷的自动化检测。本文将详细介绍整个系统的设计与实现过程,包括YOLOv8的训练、数据集配置、UI界面设计以及最终的实验结果与分析。
目录
2. 背景知识
2.1 深度学习与目标检测
目标检测是计算机视觉领域的一项核心任务,旨在从图像或视频中检测和识别多个目标对象的位置及类别。传统的目标检测方法需要大量的特征提取和手工设计,而深度学习方法,特别是卷积神经网络(CNN)的兴起,极大地提升了目标检测的性能。