1. 引言
随着人工智能技术的快速发展,智能家居系统逐渐渗透到日常生活中。利用计算机视觉进行家中安全监控已经成为一种高效的智能化手段,尤其在防范陌生人入侵方面,深度学习方法表现出了巨大的潜力。在目标检测领域,NanoDet作为一种轻量级、快速且准确的目标检测算法,因其优异的推理速度和较低的计算要求,适用于嵌入式设备和实时监控场景,成为理想的选择。
在这篇博客中,我们将介绍如何基于NanoDet构建一个“家中陌生人入侵检测”系统,结合目标检测、UI界面设计和报警系统,实现一个完整的入侵检测解决方案。我们将深入探讨如何选择数据集、训练NanoDet模型、进行实时推理、设计UI界面并处理报警机制,最终构建一个能够实时监测并报警的智能系统。
目录
2. NanoDet简介
NanoDet是一个轻量级的目标检测算法,基于深度卷积神经网络(CNN)和高效的网络架构,能够在保证较高精度的同时,提供较低的计算成本。与YOLO、SSD等传统目标检测算法相比,NanoDet不仅在精度上表现良好,而且由于其轻量化的设计,推理速度更快,特别适用于边缘设备和低计算资源的场景。
NanoDet的关键特点包括: