在现代工厂中,巡检机器人扮演着越来越重要的角色。通过自动化巡检,工厂能够实时监控设备的运行状况,提前发现潜在问题,提升生产效率并降低安全隐患。本篇博客将详细介绍如何使用NanoDet模型构建一个用于工厂巡检机器人的目标识别系统,结合UI界面和数据集的实现过程,具体步骤包括数据集准备、模型训练、UI设计以及部署应用。
目录
1. 引言
随着工业4.0的推进,越来越多的企业开始使用智能机器人来进行生产环境的巡检工作。这些机器人可以帮助检测生产设备的异常、监控生产线的情况以及识别危险源,如火灾、烟雾或设备故障等。为了实现这一目标,机器视觉系统起着至关重要的作用。本文将重点介绍如何构建一个基于NanoDet的目标识别系统,帮助机器人识别工厂中的目标。
2. 系统设计
2.1 系统架构
整个工厂巡检机器人目标识别系统的架构可分为以下几个模块:
- 数据采集模块:机器人通过摄像头采集工厂环境中的实时视频或图像数据。
- 目标识别模块:使用深度学习模型(NanoDet)对视