一、前言
在自动驾驶领域,目标检测和追踪技术的应用至关重要。车辆、行人、交通标志等物体的准确识别和追踪,对于自动驾驶系统的安全性和高效性具有直接影响。随着深度学习技术的不断发展,YOLO(You Only Look Once)系列模型已经成为目标检测领域的主流方法。YOLOv8作为YOLO系列中的最新版本,在目标检测精度和速度方面进行了进一步的优化。
本篇博客将详细介绍如何结合YOLOv8与UI界面实现一个自动驾驶中的目标检测和追踪系统。具体而言,我们将以一个包含6个类别(车辆、行人、交通标志等)的数据集为例,介绍如何使用YOLOv8进行目标检测,并通过UI界面展示目标检测和追踪的结果。我们将从数据集的准备、模型训练、目标检测与追踪算法的实现、UI界面的设计等方面,提供完整的解决方案和代码。
二、RoboCar数据集概述
RoboCar数据集是一个自动驾驶领域常用的目标检测和追踪数据集,包含了多种常见的目标类别,如车辆、行人、交通标志等。该数据集适用于自动驾驶场景下的目标检测和追踪任务,涵盖了车辆、行人等目标在不同环境下的表现。
数据集的6个类别:
- 车辆:各种类型的汽车、卡车等。
- 行人:步行的人类。