YOLOv8改进实战 | 注意力篇 | 引入ICCV2023顶会LSKNet:大选择性卷积注意力模块LSKA,助力小目标检测

 

## YOLOv8的局限性与LSKNet的创新价值
YOLOv8作为目标检测领域的SOTA模型,凭借其高效的推理速度和出色的检测性能,广泛应用于工业检测、自动驾驶和遥感分析等领域。然而,**小目标检测**始终是YOLO系列的痛点——随着网络层数加深,特征图分辨率下降,导致小目标的边缘信息和空间结构严重丢失。传统注意力机制(如SE、CBAM)虽能增强特征表示,但难以动态适应复杂场景中目标的尺度变化,尤其是遥感图像中的微小目标(如车辆、建筑物)和密集排布目标。

ICCV2023顶会提出的**LSKNet(Large Selective Kernel Network)**,首次在遥感领域探索大核选择与空间注意力机制的融合,通过动态调整卷积核的尺寸和空间权重,显著提升模型对多尺度目标的适应性。实验表明,LSKNet在VisDrone和AI-TOD数据集上的mAP分别提升14.3%和17.9%,同时模型参数量减少33%。本文将详细解析LSKNet的核心原理,并实战演示如何将其集成至YOLOv8中,实现小目标检测的突破性优化。

---

## 一、LSKNet核心原理:大核选择与空间注意力

### 1.1 LSKNet的整体架构设计
LSKNet的核心创新在于**动态感受野调整**与**多尺度特征融合**。其架构由两个关键模块构成:
1. **大型核选择子块&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Loving_enjoy

感谢亲们的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值