## YOLOv8的局限性与LSKNet的创新价值
YOLOv8作为目标检测领域的SOTA模型,凭借其高效的推理速度和出色的检测性能,广泛应用于工业检测、自动驾驶和遥感分析等领域。然而,**小目标检测**始终是YOLO系列的痛点——随着网络层数加深,特征图分辨率下降,导致小目标的边缘信息和空间结构严重丢失。传统注意力机制(如SE、CBAM)虽能增强特征表示,但难以动态适应复杂场景中目标的尺度变化,尤其是遥感图像中的微小目标(如车辆、建筑物)和密集排布目标。
ICCV2023顶会提出的**LSKNet(Large Selective Kernel Network)**,首次在遥感领域探索大核选择与空间注意力机制的融合,通过动态调整卷积核的尺寸和空间权重,显著提升模型对多尺度目标的适应性。实验表明,LSKNet在VisDrone和AI-TOD数据集上的mAP分别提升14.3%和17.9%,同时模型参数量减少33%。本文将详细解析LSKNet的核心原理,并实战演示如何将其集成至YOLOv8中,实现小目标检测的突破性优化。
---
## 一、LSKNet核心原理:大核选择与空间注意力
### 1.1 LSKNet的整体架构设计
LSKNet的核心创新在于**动态感受野调整**与**多尺度特征融合**。其架构由两个关键模块构成:
1. **大型核选择子块&#