1. 引言
随着深度学习在计算机视觉领域的广泛应用,目标检测已成为计算机视觉的一个重要任务,尤其在自动驾驶、监控视频分析等领域具有重要意义。目标检测旨在从图像或视频中识别出特定的对象并标注其位置。为了实现这一目标,研究者们已经开发了多种深度学习模型,其中,YOLO(You Only Look Once)系列模型因其端到端的训练方式、出色的检测性能和高效的推理速度而广泛应用于实时目标检测任务。
Carpeted Floor Dataset 是一个包含两种类别(汽车和行人)的小型目标检测数据集。该数据集专门为汽车和行人在室内的检测任务提供了图像,适合用来训练和评估YOLOv10等目标检测模型。本文将详细介绍如何使用YOLOv10模型,结合Carpeted Floor Dataset进行目标检测任务,展示从数据预处理、模型训练、评估到目标检测的完整过程,并提供相应的代码实现。
2. Carpeted Floor Dataset概述
Carpeted Floor Dataset 是一个专门为汽车与行人检测任务设计的数据集,主要用于目标检测任务。该数据集包含两类目标:汽车(Car)和行人(Pedestrian)。数据集中的图像主要采集自室内环境,在包含地毯