基于YOLOv10与Carpeted Floor Dataset的汽车与行人目标检测研究与实现

1. 引言

随着深度学习在计算机视觉领域的广泛应用,目标检测已成为计算机视觉的一个重要任务,尤其在自动驾驶、监控视频分析等领域具有重要意义。目标检测旨在从图像或视频中识别出特定的对象并标注其位置。为了实现这一目标,研究者们已经开发了多种深度学习模型,其中,YOLO(You Only Look Once)系列模型因其端到端的训练方式、出色的检测性能和高效的推理速度而广泛应用于实时目标检测任务。

Carpeted Floor Dataset 是一个包含两种类别(汽车和行人)的小型目标检测数据集。该数据集专门为汽车和行人在室内的检测任务提供了图像,适合用来训练和评估YOLOv10等目标检测模型。本文将详细介绍如何使用YOLOv10模型,结合Carpeted Floor Dataset进行目标检测任务,展示从数据预处理、模型训练、评估到目标检测的完整过程,并提供相应的代码实现。

2. Carpeted Floor Dataset概述

Carpeted Floor Dataset 是一个专门为汽车与行人检测任务设计的数据集,主要用于目标检测任务。该数据集包含两类目标:汽车(Car)和行人(Pedestrian)。数据集中的图像主要采集自室内环境,在包含地毯

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值