基于YOLOv8的风电叶片损伤检测系统

一、项目背景

随着风能在全球能源结构中占据越来越重要的地位,风电设备的安全运行成为重中之重。其中,风电叶片作为风机最核心的部件之一,在长期运行过程中极易出现如裂缝、侵蚀、剥落等损伤。传统的人工检测方法存在效率低、成本高、主观性强等问题,深度学习的快速发展为风电叶片的自动化检测提供了新思路。

本项目旨在构建一个基于YOLOv8的风电叶片损伤检测系统,结合可视化UI界面,实现一键上传叶片图片即可完成识别、定位和可视化分析,助力智能运维。


二、项目亮点

  • 使用YOLOv8进行叶片损伤检测,支持裂缝、表皮破损、磨损等多类缺陷识别;
  • 采用PyQt5开发图形界面,用户友好;
  • 支持自定义数据集训练与结果导出;
  • 可部署于桌面环境用于实际检测场景。

三、参考数据集

推荐使用以下数据集:

  1. Wind Turbine Blade Surface Damage Dataset

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值