一、项目背景
随着风能在全球能源结构中占据越来越重要的地位,风电设备的安全运行成为重中之重。其中,风电叶片作为风机最核心的部件之一,在长期运行过程中极易出现如裂缝、侵蚀、剥落等损伤。传统的人工检测方法存在效率低、成本高、主观性强等问题,深度学习的快速发展为风电叶片的自动化检测提供了新思路。
本项目旨在构建一个基于YOLOv8的风电叶片损伤检测系统,结合可视化UI界面,实现一键上传叶片图片即可完成识别、定位和可视化分析,助力智能运维。
二、项目亮点
- 使用YOLOv8进行叶片损伤检测,支持裂缝、表皮破损、磨损等多类缺陷识别;
- 采用PyQt5开发图形界面,用户友好;
- 支持自定义数据集训练与结果导出;
- 可部署于桌面环境用于实际检测场景。
三、参考数据集
推荐使用以下数据集:
-
Wind Turbine Blade Surface Damage Dataset
- 来源:Kaggle Blade Surface Damage
- 含约2000+张带标签图像,包含裂纹、涂层剥落、腐蚀等缺陷;</